liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Model-Predictive Control with Stochastic Collision Avoidance using Bayesian Policy Optimization
Linköpings universitet, Institutionen för datavetenskap, Artificiell intelligens och integrerade datorsystem. Linköpings universitet, Tekniska fakulteten.
Linköpings universitet, Institutionen för datavetenskap, Artificiell intelligens och integrerade datorsystem. Linköpings universitet, Tekniska fakulteten.
Linköpings universitet, Institutionen för datavetenskap, Artificiell intelligens och integrerade datorsystem. Linköpings universitet, Tekniska fakulteten.
Linköpings universitet, Institutionen för datavetenskap, Artificiell intelligens och integrerade datorsystem. Linköpings universitet, Tekniska fakulteten.
2016 (Engelska)Ingår i: IEEE International Conference on Robotics and Automation (ICRA), 2016, Institute of Electrical and Electronics Engineers (IEEE), 2016, s. 4597-4604Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Robots are increasingly expected to move out of the controlled environment of research labs and into populated streets and workplaces. Collision avoidance in such cluttered and dynamic environments is of increasing importance as robots gain more autonomy. However, efficient avoidance is fundamentally difficult since computing safe trajectories may require considering both dynamics and uncertainty. While heuristics are often used in practice, we take a holistic stochastic trajectory optimization perspective that merges both collision avoidance and control. We examine dynamic obstacles moving without prior coordination, like pedestrians or vehicles. We find that common stochastic simplifications lead to poor approximations when obstacle behavior is difficult to predict. We instead compute efficient approximations by drawing upon techniques from machine learning. We propose to combine policy search with model-predictive control. This allows us to use recent fast constrained model-predictive control solvers, while gaining the stochastic properties of policy-based methods. We exploit recent advances in Bayesian optimization to efficiently solve the resulting probabilistically-constrained policy optimization problems. Finally, we present a real-time implementation of an obstacle avoiding controller for a quadcopter. We demonstrate the results in simulation as well as with real flight experiments.

Ort, förlag, år, upplaga, sidor
Institute of Electrical and Electronics Engineers (IEEE), 2016. s. 4597-4604
Serie
Proceedings of IEEE International Conference on Robotics and Automation, ISSN 1050-4729
Nyckelord [en]
Robot Learning, Collision Avoidance, Robotics, Bayesian Optimization, Model Predictive Control
Nationell ämneskategori
Robotteknik och automation Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:liu:diva-126769DOI: 10.1109/ICRA.2016.7487661ISI: 000389516203138OAI: oai:DiVA.org:liu-126769DiVA, id: diva2:916711
Konferens
IEEE International Conference on Robotics and Automation (ICRA), 2016, Stockholm, May 16-21
Projekt
CADICSELLIITNFFP6CUASSHERPA
Forskningsfinansiär
Linnaeus research environment CADICSELLIIT - The Linköping‐Lund Initiative on IT and Mobile CommunicationsEU, FP7, Sjunde ramprogrammetStiftelsen för strategisk forskning (SSF)Tillgänglig från: 2016-04-04 Skapad: 2016-04-04 Senast uppdaterad: 2018-01-10Bibliografiskt granskad
Ingår i avhandling
1. Methods for Scalable and Safe Robot Learning
Öppna denna publikation i ny flik eller fönster >>Methods for Scalable and Safe Robot Learning
2017 (Engelska)Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Robots are increasingly expected to go beyond controlled environments in laboratories and factories, to enter real-world public spaces and homes. However, robot behavior is still usually engineered for narrowly defined scenarios. To manually encode robot behavior that works within complex real world environments, such as busy work places or cluttered homes, can be a daunting task. In addition, such robots may require a high degree of autonomy to be practical, which imposes stringent requirements on safety and robustness. \setlength{\parindent}{2em}\setlength{\parskip}{0em}The aim of this thesis is to examine methods for automatically learning safe robot behavior, lowering the costs of synthesizing behavior for complex real-world situations. To avoid task-specific assumptions, we approach this from a data-driven machine learning perspective. The strength of machine learning is its generality, given sufficient data it can learn to approximate any task. However, being embodied agents in the real-world, robots pose a number of difficulties for machine learning. These include real-time requirements with limited computational resources, the cost and effort of operating and collecting data with real robots, as well as safety issues for both the robot and human bystanders.While machine learning is general by nature, overcoming the difficulties with real-world robots outlined above remains a challenge. In this thesis we look for a middle ground on robot learning, leveraging the strengths of both data-driven machine learning, as well as engineering techniques from robotics and control. This includes combing data-driven world models with fast techniques for planning motions under safety constraints, using machine learning to generalize such techniques to problems with high uncertainty, as well as using machine learning to find computationally efficient approximations for use on small embedded systems.We demonstrate such behavior synthesis techniques with real robots, solving a class of difficult dynamic collision avoidance problems under uncertainty, such as induced by the presence of humans without prior coordination. Initially using online planning offloaded to a desktop CPU, and ultimately as a deep neural network policy embedded on board a 7 quadcopter.

Ort, förlag, år, upplaga, sidor
Linköping: Linköping University Electronic Press, 2017. s. 37
Serie
Linköping Studies in Science and Technology. Thesis, ISSN 0280-7971 ; 1780
Nyckelord
Symbicloud, ELLIIT, WASP
Nationell ämneskategori
Data- och informationsvetenskap Datorseende och robotik (autonoma system)
Identifikatorer
urn:nbn:se:liu:diva-138398 (URN)10.3384/lic.diva-138398 (DOI)978-91-7685-490-7 (ISBN)
Presentation
2017-09-15, Alan Turing, E-huset, Campus Valla, Linköping, 10:15 (Engelska)
Opponent
Handledare
Forskningsfinansiär
ELLIIT - The Linköping‐Lund Initiative on IT and Mobile CommunicationsKnut och Alice Wallenbergs StiftelseStiftelsen för strategisk forskning (SSF)
Tillgänglig från: 2017-08-17 Skapad: 2017-08-16 Senast uppdaterad: 2018-01-13Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Personposter BETA

Andersson, OlovWzorek, MariuszRudol, PiotrDoherty, Patrick

Sök vidare i DiVA

Av författaren/redaktören
Andersson, OlovWzorek, MariuszRudol, PiotrDoherty, Patrick
Av organisationen
Artificiell intelligens och integrerade datorsystemTekniska fakulteten
Robotteknik och automationDatavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 1496 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf