liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
MRI-based age prediction using hidden Markov models
MRI-based age prediction using hidden Markov models.
Bioinformatics Research Group, School of Engineering and Information Technology, The University of New South Wales, Canberra ACT 2600, Australia.ORCID-id: 0000-0002-4255-5130
2011 (Engelska)Ingår i: Journal of Neuroscience Methods, ISSN 0165-0270, E-ISSN 1872-678X, Vol. 199, nr 1, s. 140-145Artikel i tidskrift (Refereegranskat) Published
Resurstyp
Text
Abstract [en]

Cortical thinning and intracortical gray matter volume losses are widely observed in normal ageing, while the decreasing rate of the volume loss in subjects withneurodegenerative disorders such as Alzheimer's disease is reported to be faster than the average speed. Therefore, neurodegenerative disease is considered as accelerated ageing. Accurate detection of accelerated ageing based on the magnetic resonance imaging (MRI) of the brain is a relatively new direction of research in computational neuroscience as it has the potential to offer positive clinical outcome through early intervention. In order to capture the faster structural alterations in the brain with ageing, we propose in this paper a computational approach for modelling the MRI-based structure of the brain using the framework of hidden Markov models, which can be utilized for age prediction. Experiments were carried out on healthy subjects to validate its accuracy and its robustness. The results have shown its ability of predicting the brain age with an average normalized age-gap error of two to three years, which is superior to several recently developed methods for brain age prediction.

Ort, förlag, år, upplaga, sidor
2011. Vol. 199, nr 1, s. 140-145
Nyckelord [en]
MRI;Age prediction;Wavelet transforms;Vector quantization;Kullback–Leibler divergence
Nationell ämneskategori
Neurologi
Identifikatorer
URN: urn:nbn:se:liu:diva-127869DOI: 10.1016/j.jneumeth.2011.04.022OAI: oai:DiVA.org:liu-127869DiVA, id: diva2:928876
Tillgänglig från: 2016-05-17 Skapad: 2016-05-13 Senast uppdaterad: 2017-11-30

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Personposter BETA

Pham, Tuan D

Sök vidare i DiVA

Av författaren/redaktören
Pham, Tuan D
I samma tidskrift
Journal of Neuroscience Methods
Neurologi

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 89 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf