liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A Concept for Credibility Assessment of Aircraft System Simulators
Saab Aeronaut, Aircraft Vehicle Syst, Modeling and Simulat, SE-58188 Linkoping, Sweden.
Saab Aeronaut, Aircraft Vehicle Syst, Modeling and Simulat, SE-58188 Linkoping, Sweden.
Saab Aeronaut, Aeronaut Engn and Weapons, SE-58188 Linkoping, Sweden.
Linköping University, Department of Management and Engineering, Machine Design. Linköping University, Faculty of Science & Engineering.
2016 (English)In: JOURNAL OF AEROSPACE INFORMATION SYSTEMS, ISSN 1940-3151, Vol. 13, no 6, p. 219-233Article in journal (Refereed) Published
Abstract [en]

An efficient methodology for verification, validation, and credibility assessment of simulation models and simulator applications is an enabler for the aeronautical industrys increasing reliance on modeling and simulation in system design and verification and on training. As a complement to traditional document-centric approaches, this paper presents a method for credibility assessment of simulator applications, in which credibility information is presented to end users directly during simulation. The central idea is that each model in a simulator is extended with a metamodel describing different aspects of credibility. The metamodel includes a number of static credibility measures and a dynamic measure that may vary during simulation. The concept is implemented and tested in two system simulators for the Saab Gripen fighter aircraft. According to the evaluation, the concept facilitates an intuitive overview of model dependencies, as well as credibility information for individual models and for a simulator as a whole. This implies a support for detecting test plan deficiencies or that a simulator configuration is not a suitable platform for the execution of a particular test. Furthermore, model developers and end users are encouraged to reflect upon central credibility aspects like intended use, model fidelity, and test worthiness in their daily work.

Place, publisher, year, edition, pages
AMER INST AERONAUTICS ASTRONAUTICS , 2016. Vol. 13, no 6, p. 219-233
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:liu:diva-131716DOI: 10.2514/1.I010391ISI: 000382152400002OAI: oai:DiVA.org:liu-131716DiVA, id: diva2:1010236
Note

Funding Agencies|Saab Aeronautics; National Aviation Engineering Research Programme (NFFP)

Available from: 2016-10-03 Created: 2016-09-30 Last updated: 2019-12-19
In thesis
1. On Standardized Model Integration: Automated Validation in Aircraft System Simulation
Open this publication in new window or tab >>On Standardized Model Integration: Automated Validation in Aircraft System Simulation
2019 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Designing modern aircraft is not an easy task. Today, it is not enough to optimize aircraft sub-systems at a sub-system level. Instead, a holistic approach is taken whereby the constituent sub-systems need to be designed for the best joint performance. The State-of-the-Art (SotA) in simulating and exchanging simulation models is moving forward at a fast pace. As such, the feasible use of simulation models has increased and additional benefits can be exploited, such as analysing coupled sub-systems in simulators. Furthermore, if aircraft sub-system simulation models are to be utilized to their fullest extent, opensource tooling and the use of open standards, interoperability between domain specific modeling tools, alongside robust and automated processes for model Verification and Validation (V&V) are required.

The financial and safety related risks associated with aircraft development and operation require well founded design and operational decisions. If those decisions are to be founded upon information provided by models and simulators, then the credibility of that information needs to be assessed and communicated. Today, the large number of sensors available in modern aircraft enable model validation and credibility assessment on a different scale than what has been possible up to this point. This thesis aims to identify and address challenges to allow for automated, independent, and objective methods of integrating sub-system models into simulators while assessing and conveying the constituent models aggregated credibility.

The results of the work include a proposed method for presenting the individual models’ aggregated credibility in a simulator. As the communicated credibility of simulators here relies on the credibility of each included model, the assembly procedure itself cannot introduce unknown discrepancies with respect to the System of Interest (SoI). Available methods for the accurate simulation of coupled models are therefore exploited and tailored to the applications of aircraft development under consideration. Finally, a framework for automated model validation is outlined, supporting on-line simulator credibility assessment according to the presented proposed method.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2019. p. 76
Series
Linköping Studies in Science and Technology. Licentiate Thesis, ISSN 0280-7971 ; 1866
National Category
Embedded Systems
Identifiers
urn:nbn:se:liu:diva-162810 (URN)10.3384/lic.diva-162810 (DOI)9789179299293 (ISBN)
Opponent
Supervisors
Projects
Model Validation – from Concept to ProductOpen Cyber-Physical System Model-Driven Certified Development (OpenCPS).
Funder
Vinnova
Note

Ytterligare forskningsfinansiär: Saab Aeronautics

Available from: 2019-12-20 Created: 2019-12-19 Last updated: 2020-01-16Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Ölvander, Johan
By organisation
Machine DesignFaculty of Science & Engineering
Other Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 63 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf