liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Autophagy induction targeting mTORC1 enhances Mycobacterium tuberculosis replication in HIV co-infected human macrophages
Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för mikrobiologi och molekylär medicin. Linköpings universitet, Medicinska fakulteten.
Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för mikrobiologi och molekylär medicin. Linköpings universitet, Medicinska fakulteten.
Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för mikrobiologi och molekylär medicin. Linköpings universitet, Medicinska fakulteten.
Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för mikrobiologi och molekylär medicin. Linköpings universitet, Medicinska fakulteten.
Vise andre og tillknytning
2016 (engelsk)Inngår i: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 6, nr 28171Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

To survive and replicate in macrophages Mycobacterium tuberculosis (Mtb) has developed strategies to subvert host defence mechanisms, including autophagy. Autophagy induction has the potential to clear Mtb, but little is known about its effect during controlled tuberculosis and HIV co-infection. Mammalian target of rapamycin complex1 (mTORC1) inhibitors were used to induce autophagy in human macrophages pre-infected with HIV-1(BaL) and infected with a low dose of Mtb (co-infected), or single Mtb infected (single infected). The controlled Mtb infection was disrupted upon mTOR inhibition resulting in increased Mtb replication in a dose-dependent manner which was more pronounced during co-infection. The increased Mtb replication could be explained by the marked reduction in phagosome acidification upon mTOR inhibition. Autophagy stimulation targeting mTORC1 clearly induced a basal autophagy with flux that was unlinked to the subcellular environment of the Mtb vacuoles, which showed a concurrent suppression in acidification and maturation/flux. Overall our findings indicate that mTOR inhibition during Mtb or HIV/Mtb co-infection interferes with phagosomal maturation, thereby supporting mycobacterial growth during low-dose and controlled infection. Therefore pharmacological induction of autophagy through targeting of the canonical mTORC1-pathway should be handled with caution during controlled tuberculosis, since this could have serious consequences for patients with HIV/Mtb co-infection.

sted, utgiver, år, opplag, sider
NATURE PUBLISHING GROUP , 2016. Vol. 6, nr 28171
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-132355DOI: 10.1038/srep28171ISI: 000384609100002PubMedID: 27302320OAI: oai:DiVA.org:liu-132355DiVA, id: diva2:1046189
Tilgjengelig fra: 2016-11-12 Laget: 2016-11-01 Sist oppdatert: 2019-03-28
Inngår i avhandling
1. Mycobacterium tuberculosis and HIV coinfection: Effects on innate immunity and strategies to boost the immune response
Åpne denne publikasjonen i ny fane eller vindu >>Mycobacterium tuberculosis and HIV coinfection: Effects on innate immunity and strategies to boost the immune response
2019 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Tuberculosis (TB) still remains a big threat today, being the leading cause of death by a single infectious agent. The TB epidemic is fueled by HIV along with the increasing drug-resistance which prolongs the already long treatment duration and decreases the success rate for curing TB. In most cases an infection results in latency but HIV patients have a 20-30 times higher risk of developing active TB. There are around 36.9 million people living with HIV globally, with the highest burden in Africa. Although there are effective treatments against the disease, there is no cure for AIDS and the availability of the lifelong treatment is limited in low-income countries were the burden is highest. HIV infection causes an immunodeficiency characterized by the progressive loss of CD4 T cells which increases the risk of opportunistic infections, and infection by Mycobacterium tuberculosis (Mtb), the causative agent of TB. Mtb spreads through aerosols from one person with active tuberculosis to a healthy person. Upon inhalation the bacteria are phagocytosed by alveolar macrophages that secrete cytokines and chemokines to recruit more cells, such as dendritic cells, macrophages and lymphocytes, leading to the formation of a granuloma. During a single TB infection the bacteria are usually contained within the granuloma, but HIV can disrupt the stable granuloma, causing a rupture and dissemination of Mtb. This inflammatory site is also beneficial to HIV since it promotes replication of the virus within infected cells. HIV and Mtb are two successful intracellular pathogens able to avoid immune defense mechanisms both of the innate and adaptive immunity in order to persist and replicate. Their virulence factors can manipulate or inhibit cell signaling, phagosome maturation, autophagy, ROS production, apoptosis and antigen presentation, to promote survival. Boosting of immune defenses with host-directed therapies (HDT) has been proposed as a treatment strategy against TB, either alone or adjunctive to the current regimen.

In this thesis, ways to boost the innate immune responses in Mtb and HIV coinfected macrophages were investigated, along with studies of the effect of HIV on Mtb antigen presentation in coinfected dendritic cells. The initial hypothesis was that autophagy induction through inhibition of mammalian target of rapamycin (mTOR) could suppress Mtb growth in HIV coinfected macrophages. However, during a low grade infection, autophagy induction increased Mtb replication due to a decreased autophagic flux and acidification of Mtb phagosomes. A general autophagic flux was induced, although not localized to the Mtb phagosomes, thus not inducing a xenophagy (autophagy of intracellular pathogens). Other ways of inducing autophagy or boosting the response in coinfected macrophages might be more beneficial and therefore the effect of efferocytosis was investigated. Uptake of apoptotic neutrophils by coinfected macrophages did not induce autophagy but enhanced the control of Mtb by other means. Upon efferocytosis, the macrophages acquired active myeloperoxidase (MPO) from the neutrophils that suppressed Mtb growth. The coinfected macrophages also produced more ROS after efferocytosis. The inhibition of Mtb growth could thus be mediated by MPO and the increased ROS production either directly or indirectly.

The possibility to boost the innate immunity could prove to be important during an HIV coinfection, when the adaptive immunity is deficient. In addition to the well-known decline in CD4 T cells during the course of HIV progression, we found that HIV infection of dendritic cells inhibited antigen presentation by suppressing the expression of HLA-DR and co-stimulatory molecules on coinfected dendritic cells. Furthermore, HIV reduced secretion of pro-inflammatory cytokines and suppressed antigen processing through inhibition of autophagy. This impaired antigen presentation in coinfected dendritic cells resulted in a decreased activation and response of Mtb-specific CD4 T cells.

In conclusion, this thesis shows how HIV can manipulate antigen presentation in Mtb coinfected dendritic cells and subsequently inhibit the adaptive immune response. It also contributes to insights on how efferocytosis of apoptotic neutrophils can boost the innate immune responses during coinfection. Lastly, autophagy induction through mTOR inhibition does not enhance protection against TB. Induction of autophagy should therefore be handled with care, particularly during HIV coinfection. 

sted, utgiver, år, opplag, sider
Linköping: Linköping University Electronic Press, 2019. s. 58
Serie
Linköping University Medical Dissertations, ISSN 0345-0082 ; 1659
HSV kategori
Identifikatorer
urn:nbn:se:liu:diva-154605 (URN)10.3384/diss.diva-154605 (DOI)9789176851425 (ISBN)
Disputas
2019-04-12, Berzeliussalen, Campus US, Linköping, 09:00 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2019-03-04 Laget: 2019-03-04 Sist oppdatert: 2019-05-21bibliografisk kontrollert

Open Access i DiVA

fulltext(2265 kB)104 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 2265 kBChecksum SHA-512
17da7423cc0ee81eb208ac2360a4afa3c61c727a8589632d7511388909006a16de8d37b42d1ba9850cd2cf4a51b59defda1440e30ce646460a1a2ced98516a48
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstPubMed

Personposter BETA

Andersson, Anna-Maria

Søk i DiVA

Av forfatter/redaktør
Andersson, Anna-MariaAndersson, BlankaRaffetseder, JohannaLarsson, MarieBlomgran, Robert
Av organisasjonen
I samme tidsskrift
Scientific Reports

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 104 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 597 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf