liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Travel demand estimation and network assignment based on cellular network data
Linköpings universitet, Institutionen för teknik och naturvetenskap, Kommunikations- och transportsystem. Linköpings universitet, Tekniska fakulteten.ORCID-id: 0000-0002-5961-5136
Linköpings universitet, Institutionen för teknik och naturvetenskap, Kommunikations- och transportsystem. Linköpings universitet, Tekniska fakulteten.ORCID-id: 0000-0001-6405-5914
Linköpings universitet, Institutionen för teknik och naturvetenskap, Kommunikations- och transportsystem. Linköpings universitet, Tekniska fakulteten.
Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska fakulteten.
2016 (Engelska)Ingår i: COMPUTER COMMUNICATIONS, ISSN 0140-3664, Vol. 95, s. 29-42Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Cellular networks signaling data provide means for analyzing the efficiency of an underlying transportation system and assisting the formulation of models to predict its future use. This paper describes how signaling data can be processed and used in order to act as means for generating input for traditional transportation analysis models. Specifically, we propose a tailored set of mobility metrics and a computational pipeline including trip extraction, travel demand estimation as well as route and link travel flow estimation based on Call Detail Records (CDR) from mobile phones. The results are based on the analysis of data from the Data for development "D4D" challenge and include data from Cote dlvoire and Senegal. (C) 2016 Elsevier B.V. All rights reserved.

Ort, förlag, år, upplaga, sidor
ELSEVIER SCIENCE BV , 2016. Vol. 95, s. 29-42
Nyckelord [en]
Mobility analytics; Travel demand estimation; Traffic modeling; Mobile phone call data; Cellular network data; Call detail records; Intelligent transport systems
Nationell ämneskategori
Datorteknik
Identifikatorer
URN: urn:nbn:se:liu:diva-134086DOI: 10.1016/j.comcom.2016.04.015ISI: 000390722300004OAI: oai:DiVA.org:liu-134086DiVA, id: diva2:1068888
Anmärkning

Funding Agencies|Swedish Governmental Agency for Innovation Systems (VINNOVA)

Tillgänglig från: 2017-01-26 Skapad: 2017-01-22 Senast uppdaterad: 2018-11-19
Ingår i avhandling
1. Transport Analytics Based on Cellular Network Signalling Data
Öppna denna publikation i ny flik eller fönster >>Transport Analytics Based on Cellular Network Signalling Data
2018 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Cellular networks of today generate a massive amount of signalling data. A large part of this signalling is generated to handle the mobility of subscribers and contains location information that can be used to fundamentally change our understanding of mobility patterns. However, the location data available from standard interfaces in cellular networks is very sparse and an important research question is how this data can be processed in order to efficiently use it for traffic state estimation and traffic planning.

In this thesis, the potentials and limitations of using this signalling data in the context of estimating the road network traffic state and understanding mobility patterns is analyzed. The thesis describes in detail the location data that is available from signalling messages in GSM, GPRS and UMTS networks, both when terminals are in idle mode and when engaged in a telephone call or a data session. The potential is evaluated empirically using signalling data and measurements generated by standard cellular phones. The data used for analysis of location estimation and route classification accuracy (Paper I-IV in the thesis) is collected using dedicated hardware and software for cellular network analysis as well as tailor-made Android applications. For evaluation of more advanced methods for travel time estimation, data from GPS devices located in Taxis is used in combination with data from fixed radar sensors observing point speed and flow on the road network (Paper V). To evaluate the potential in using cellular network signalling data for analysis of mobility patterns and transport planning, real data provided by a cellular network operator is used (Paper VI).

The signalling data available in all three types of networks is useful to estimate several types of traffic data that can be used for traffic state estimation as well as traffic planning. However, the resolution in time and space largely depends on which type of data that is extracted from the network, which type of network that is used and how it is processed.

The thesis proposes new methods based on integrated filtering and classification as well as data assimilation and fusion that allows measurement reports from the cellular network to be used for efficient route classification and estimation of travel times. The thesis also shows that participatory sensing based on GPS equipped smartphones is useful in estimating radio maps for fingerprint-based positioning as well as estimating mobility models for use in filtering of course trajectory data from cellular networks.

For travel time estimation, it is shown that the CEP-67 location accuracy based on the proposed methods can be improved from 111 meters to 38 meters compared to standard fingerprinting methods. For route classification, it is shown that the problem can be solved efficiently for highway environments using basic classification methods. For urban environments the link precision and recall is improved from 0.5 and 0.7 for standard fingerprinting to 0.83 and 0.92 for the proposed method based on particle filtering with integrity monitoring and Hidden Markov Models.

Furthermore, a processing pipeline for data driven network assignment is proposed for billing data to be used when inferring mobility patterns used for traffic planning in terms of OD matrices, route choice and coarse travel times. The results of the large-scale data set highlight the importance of the underlying processing pipeline for this type of analysis. However, they also show very good potential in using large data sets for identifying needs of infrastructure investment by filtering out relevant data over large time periods.

Ort, förlag, år, upplaga, sidor
Linköping: Linköping University Electronic Press, 2018. s. 58
Serie
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1965
Nationell ämneskategori
Transportteknik och logistik Kommunikationssystem Datorteknik Annan data- och informationsvetenskap
Identifikatorer
urn:nbn:se:liu:diva-152237 (URN)10.3384/diss.diva-152237 (DOI)9789176851722 (ISBN)
Disputation
2018-11-30, K1, Kåkenhus, Campus Norrköping, Norrköping, 13:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2018-10-23 Skapad: 2018-10-23 Senast uppdaterad: 2019-09-30Bibliografiskt granskad

Open Access i DiVA

fulltext(1028 kB)347 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1028 kBChecksumma SHA-512
b8d726d749d3b6a7b4a48d96916a207c7fbd1039e471b4bd4378a3c6fbab361a9f89db6855b25c22ff3ffd6b982bf6d918eb25d31701b56a518b6518d58d34da
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltext

Sök vidare i DiVA

Av författaren/redaktören
Gundlegård, DavidRydergren, ClasBreyer, Nils
Av organisationen
Kommunikations- och transportsystemTekniska fakultetenInstitutionen för teknik och naturvetenskap
Datorteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 347 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 245 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf