liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Time-Resolved Chemical Mapping in Light-Emitting Electrochemical Cells
Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär fysik. Linköpings universitet, Tekniska fakulteten.ORCID-id: 0000-0003-3899-4891
Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.ORCID-id: 0000-0001-5365-6140
Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär fysik. Linköpings universitet, Tekniska fakulteten.ORCID-id: 0000-0002-1639-5735
2017 (Engelska)Ingår i: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 9, nr 3, s. 2747-2757Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

An understanding of the doping and ion distributions in light-emitting electrochemical cells (LECs) is required to approach a realistic conduction model which can precisely explain the electrochemical reactions, p-n junction formation, and ion dynamics in the active layer and to provide relevant information about LECs for systematic improvement of function and manufacture. Here, Fourier-transform infrared (FTIR) microscopy is used to monitor anion density profile and polymer structure in situ and for time-resolved mapping of electrochemical doping in an LEC under bias. The results are in very good agreement with the electrochemical doping model with respect to ion redistribution and formation of a dynamic p-n junction in the active layer. We also physically slow ions by decreasing the working temperature and study frozen-junction formation and immobilization of ions in a fixed-junction LEC device by FTIR imaging. The obtained results show irreversibility of the ion redistribution and polymer doping in a fixed-junction device. In addition, we demonstrate that infrared microscopy is a useful tool for in situ characterization of electroactive organic materials.

Ort, förlag, år, upplaga, sidor
AMER CHEMICAL SOC , 2017. Vol. 9, nr 3, s. 2747-2757
Nyckelord [en]
light-emitting electrochemical cell; FTIR spectroscopic imaging electrochemical doping doping profile; ion distribution; dynamic p-n junction; infrared microspectroscopy; principal component analysis
Nationell ämneskategori
Oorganisk kemi
Identifikatorer
URN: urn:nbn:se:liu:diva-135398DOI: 10.1021/acsami.6b14162ISI: 000392909500086PubMedID: 28032741OAI: oai:DiVA.org:liu-135398DiVA, id: diva2:1081514
Anmärkning

Funding Agencies|Power Papers project from the Knut and Alice Wallenberg Foundation [2011-0050]; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University [SFO-Mat-LiU 2009-00971]

Tillgänglig från: 2017-03-14 Skapad: 2017-03-14 Senast uppdaterad: 2017-11-29
Ingår i avhandling
1. Application of Vibrational Spectroscopy in Organic Electronics
Öppna denna publikation i ny flik eller fönster >>Application of Vibrational Spectroscopy in Organic Electronics
2017 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

The rapid technological developments enforce us to live in an increasingly electronic world, and the revolutionary usage of conjugated polymers in electronics in the late 1970s accelerated these developments, based on the unique characteristics of conjugated polymers, such as low cost, easy processing, mechanical flexibility, large-area application and compatibility with a variety of substrates. Organic electronic devices are commercially available in the form of, for example, solar cells, transistors, and organic light-emitting diode (OLED) displays. Scientists work on electroactive polymers to enhance their chemical, electrical and mechanical properties, to improve parameters such as charge carrier mobility and doping capacity, in order to reach acceptable efficiency and stability to fabricate organic electronic devices. A comprehensive understanding of the changes in chemical structure, in response to external factors such as applied potential and temperature gradients, which can disturb the chemical equilibrium of the constituent materials, and of the conduction mechanisms of the operating devices, can help to enhance the performance of organic electronics devices. Vibrational spectroscopy is a powerful analytical method for in-situ monitoring of such chemical or electrochemical reactions and associated structural changes of conjugated polymers in a working device.

In this thesis, Fourier-transform infrared (FTIR) spectroscopy has been used to study the structural changes in electroactive organic materials, in response to chemical or electrochemical reactions, and to study electrical and thermal conduction mechanisms in different organic electronic devices. FTIR microscopy was used to approach a realistic conduction mechanism by time-resolved chemical imaging of active materials in planar light-emitting electrochemical cells (LECs), investigated as an alternative to organic light emitting diodes (OLEDs). These chemical images are used for in-situ mapping of anion density profiles, polymer doping, and dynamic junction formation in the active layer under an applied bias. Results confirm the electrochemical doping model and help the systematic improvement of function and manufacture of LECs. Mixed ion-electron polymeric conductor materials such as PEDOT-PSS are used as active materials in organic thermoelectric generators (OTEGs), where charge carrier transport through the active layer promotes internal electrochemical reactions under a temperature gradient. FTIR microscopy and FTIR-attenuated total reflection (FTIR-ATR) were used to study thermoelectric and electrical properties of the conducting polymers. Recently, electrochemical supercapacitors have emerged as an alternative to conventional batteries, and polymeric materials are used to design polymer electrodes for renewable energy storage. To understand the charge transfer and structural changes of the polymer during the redox reaction, we have used FTIR-ATR as a tool for the in-situ spectroelectrochemical study of redox states in polypyrrole/lignin composites; we clarified the structural changes in the materials during charging and discharging of the composite. In further work, FTIR-ATR was also used for in-situ spectroelectrochemical studies of PEDOT:Cl, to monitor the effects of dissolved oxygen on PEDOT:Cl films, which are used as electrodes in renewable energy technologies. Further, time-resolved oxygen reduction reactions of PEDOT:Cl have been studied via polarization-modulation infrared reflection-absorption spectroscopy (PM-IRAS) to reveal chemical changes in electrochemically doped PEDOT upon exposure to oxygen.

Taken together, these studies provide an advancement in the use of infrared spectroscopy as a tool to understand electroactive materials under wet conditions, and have provided detailed chemical and electrochemical information of materials and devices under operation, that is not easily accessible with other methods.

Ort, förlag, år, upplaga, sidor
Linköping: Linköping University Electronic Press, 2017. s. 61
Serie
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1884
Nationell ämneskategori
Atom- och molekylfysik och optik
Identifikatorer
urn:nbn:se:liu:diva-142216 (URN)9789176854440 (ISBN)
Disputation
2017-11-17, Planck, F-House, Campus Valla, Linköping, 10:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2017-10-23 Skapad: 2017-10-23 Senast uppdaterad: 2017-10-23Bibliografiskt granskad

Open Access i DiVA

fulltext(1661 kB)47 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1661 kBChecksumma SHA-512
2a5af9ac1e628cdc657c47456ced7cfb3f7370313ff31cb818f00a824fbc61fc12487c4d4804c473ccd463eaa4eca2dc03332ce089bd11eca22f40dff2f317f8
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextPubMed

Sök vidare i DiVA

Av författaren/redaktören
Jafari, Mohammad JavadLiu, JiangEngquist, IsakEderth, Thomas
Av organisationen
Molekylär fysikTekniska fakultetenFysik och elektroteknikTekniska högskolan
I samma tidskrift
ACS Applied Materials and Interfaces
Oorganisk kemi

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 47 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 978 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf