liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Effect of (3-Glycidyloxypropyl)Trimethoxysilane (GOPS) on the Electrical Properties of PEDOT:PSS Films
Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Science and Technology. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
Show others and affiliations
2017 (English)In: Journal of Polymer Science Part B: Polymer Physics, ISSN 0887-6266, E-ISSN 1099-0488, Vol. 55, no 10, p. 814-820Article in journal (Refereed) Published
Abstract [en]

Poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate) (PEDOT:PSS) has been reported as a successful functional material in a broad variety of applications. One of the most important advantages of PEDOT:PSS is its water-solubility, which enables simple and environmental friendly manufacturing processes. Unfortunately, this also implies that pristine PEDOT:PSS films are unsuitable for applications in aqueous environments. To reach stability in polar solvents, (3-glycidyloxypropyl)trimethoxysilane (GOPS) is typically used to cross-link PEDOT:PSS. Although this strategy is widely used, its mechanism and effect on PEDOT:PSS performance have not been articulated yet. Here, we present a broad study that provides a better understanding of the effect of GOPS on the electrical and electronic properties of PEDOT:PSS. We show that the GOPS reacts with the sulfonic acid group of the excess PSS, causing a change in the PEDOT:PSS film morphology, while the oxidation level of PEDOT remains unaffected. This is at the origin of the observed conductivity changes. (c) 2017 Wiley Periodicals, Inc.

Place, publisher, year, edition, pages
WILEY , 2017. Vol. 55, no 10, p. 814-820
Keywords [en]
crosslinking; film morphology; GOPS; oxidation level; PEDOT:PSS
National Category
Polymer Chemistry
Identifiers
URN: urn:nbn:se:liu:diva-136852DOI: 10.1002/polb.24331ISI: 000398533300006OAI: oai:DiVA.org:liu-136852DiVA, id: diva2:1092118
Available from: 2017-04-30 Created: 2017-04-30 Last updated: 2019-10-30
In thesis
1. Thermoelectric polymer-cellulose composite aerogels
Open this publication in new window or tab >>Thermoelectric polymer-cellulose composite aerogels
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Thermoelectric materials are scrutinized as energy materials and sensing materials. Indeed, they convert thermal energy into electrical energy. In addition, those materials are actively sensitive to a temperature modification through the generation of an electric signal. Organic thermoelectric (OTE) materials are complementary to inorganic thermoelectric materials, as they possess unique properties such as solution processing, ionic conductivity, flexibility, and softness. While thin-film OTE materials have been widely studied because they are easily manufactured by various coating techniques, little is done in the creation of three-dimensional morphologies of OTE materials; which is important to develop large temperature gradients.

Cellulose is the most abundant biopolymer on the planet. Recently, the applications of cellulose are not only limited in making papers but also in electronics as the cellulose provide 3-D microstructures and mechanical strength. One promising approach to make 3-D OTE bulks is using cellulose as scaffold because of their properties of relatively high mechanical strength, water processability and environmentally friendly performance.

The aims of the thesis have been to enlarge the applications of an OTE material poly(3,4-ethylenedioxythiophene) (PEDOT), with an approach of making 3-D aerogels composite with nanofibrillated cellulose (NFC), in two main areas: (1) multi-parameter sensors and (2) solar vapor generators. In the first application, we demonstrate that the new thermoelectric aerogel responds independently to pressure P, temperature T and humidity RH. Hence, when it is submitted to the three stresses (T, P, RH), the electrical characterization of the material enables to measure the three parameters without cross-talking effects. Thermoelectric aerogels are foreseen as active materials in electronic skins and robotics. In the second application, the conducting polymer aerogels are employed as solar absorbers to convert solar energy into heat and significantly increased the water evaporation rate. The IR absorption is efficient because of the free-electron in the conducting polymer PEDOT nano-aggregates. Because of the low cost of those materials and the water stability of the crosslinked aerogels, they could be of importance for water desalination.

Abstract [sv]

Termoelektriska material har utvärderats som energi- och sensormaterial. Som energimaterial har de studerats som ett sätt att transformera termisk energi till elektrisk energi, och har använts för kylnings- och uppvärmningsapplikationer. Som sensormaterial kan de känna av temperatur eller temperaturskillnader och tillhandahåller elektriska signaler. Organiska termoelektriska (OTE) material, det vill säga kolbaserade termoelektriska material, är komplementära till inorganiska termoelektriska material eftersom de har unika egenskaper så som processbarhet i lösningsform, jonisk ledningsförmåga, böjbarhet, och mjukhet. Tunna filmer av OTE-material har vida studerats eftersom de är lätta att tillverka via olika beläggningsmetoder, men tredimensionella strukturer är till stor del ett outforskat område och är viktigt för att uppnå stora temperaturgradienter.

Cellulosa är ett billigt material som utgör den vanligaste biopolymeren på vår planet. Nyligen så har applikationerna för cellulosa sträckt sig bortom papperstillverkning och används nu även inom elektronik för att förse 3D-mikrostrukturer och mekanisk styrka. En lovande metod för att tillverka 3D-strukturer av OTE-material är genom att använda cellulosanätverk på grund av dess relativt höga mekaniska styrka, processbarhet i vattenlösningar och dess miljövänlighet.

Syftet med denna avhandling har varit att bredda applikationerna för OTE-materialet poly(3,4-ethylenedioxythiophene) (PEDOT), genom att tillverka 3D aerogelkompositer med nanofibrillerad cellulosa (NFC). Detta har gjorts inom två områden: (1) Multiparameter-sensorer och (2) solar vapor generators. För den första applikationen så demonstrerar vi att de nya termoelektriska aerogelerna har oberoende signaler från tryck, temperatur och relativ fuktighet. Det vill säga att när materialet utsätts för dessa stimuli så kan signalerna som genereras urskiljas av utan överhörning. De termoelektriska aerogelena förutses bli användbara inom områden så som elektronisk hud och robotik. För den andra applikationen används de elektriskt ledande aerogelena för att absorbera solljus för att omvandla solenergi till värme vilket kan öka förångningshastigheten hos vatten. Absorptionen i IR-området är effektivt eftersom de rörliga elektronerna i den ledande polymeren nano-aggregerar. På grund av den låga kostnaden hos dessa material och våtstabiliteten hos korslänkade aerogeler kan dessa material tänkas användas för vattenavsaltning.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2019. p. 63
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 2028
National Category
Materials Chemistry
Identifiers
urn:nbn:se:liu:diva-161350 (URN)10.3384/diss.diva-161350 (DOI)9789179299675 (ISBN)
Public defence
2019-11-15, Kåkenhus sal K3, Bredgatan 33, Norrköping, 10:00 (English)
Opponent
Supervisors
Available from: 2019-10-30 Created: 2019-10-30 Last updated: 2019-10-30Bibliographically approved

Open Access in DiVA

fulltext(1443 kB)186 downloads
File information
File name FULLTEXT01.pdfFile size 1443 kBChecksum SHA-512
298f40c33eefb5c81576a99b6d72b2f6cd8a04de0ebdf752272cc5a06140e1a4643d7e5f421c051a1b6f7d73a28a590be3ed426c16b977c5a8f3a20e4a5743b2
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Search in DiVA

By author/editor
Håkansson, AnnaHan, ShaoboWang, SuhaoLu, JunBraun, SlawomirFahlman, MatsBerggren, MagnusCrispin, XavierFabiano, Simone
By organisation
Physics and ElectronicsFaculty of Science & EngineeringDepartment of Science and TechnologyThin Film PhysicsSurface Physics and Chemistry
In the same journal
Journal of Polymer Science Part B: Polymer Physics
Polymer Chemistry

Search outside of DiVA

GoogleGoogle Scholar
Total: 186 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 1322 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf