liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Photoluminescence Characteristics of III-Nitride Quantum Dots and Films
Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

III-Nitride semiconductors are very promising in both electronics and optical devices. The ability of the III-Nitride semiconductors as light emitters to span the electromagnetic spectrum from deep ultraviolet light, through the entire visible region, and into the infrared part of the spectrum, is a very important feature, making this material very important in the field of light emitting devices. In fact, the blue emission from Indium Gallium Nitride (InGaN), which was awarded the 2014 Nobel Prize in Physics, is the basis of the common and important white light emitting diode (LED).

Quantum dots (QDs) have properties that make them very interesting for light emitting devices for a range of different applications, such as the possibility of increasing device efficiency. The spectrally well-defined emission from QDs also allows accurate color reproduction and high-performance communication devices. The small size of QDs, combined with selective area growth allows for an improved display resolution. By control of the polarization direction of QDs, they can be used in more efficient displays as well as in traditional communication devices. The possibility of sending out entangled photon pairs is another QD property of importance for quantum key distribution used for secure communication.

QDs can hold different exciton complexes, such as the neutral single exciton, consisting of one electron and one hole, and the biexciton, consisting of two excitons. The integrated PL intensity of the biexciton exhibits a quadratic dependence with respect to the excitation power, as compared to the linear power dependence of the neutral single exciton. The lifetime of the neutral exciton is 880 ps, whereas the biexciton, consisting of twice the number of charge carriers and lacks a dark state, has a considerably shorter lifetime of only 500 ps. The ratio of the lifetimes is an indication that the size of the QD is in the order of the exciton Bohr radius of the InGaN crystal making up these QDs in the InGaN QW.

A large part of the studies of this thesis has been focused on InGaN QDs on top of hexagonal Gallium Nitride (GaN) pyramids, selectively grown by Metal Organic Chemical Vapor Deposition (MOCVD). On top of the GaN pyramids, an InGaN layer and a GaN capping layer were grown. From structural and optical investigations, InGaN QDs have been characterized as growing on (0001) facets on truncated GaN pyramids. These QDs exhibit both narrow photoluminescence linewidths and are linearly polarized in directions following the symmetry of the pyramids.

In this work, the neutral single exciton, and the more rare negatively charged exciton, have been investigated. At low excitation power, the integrated intensity of the PL peak of the neutral exciton increases linearly with the excitation power. The negatively charged exciton, on the other hand, exhibits a quadratic power dependence, just like that of the biexciton. Upon increasing the temperature, the power dependence of the negatively charged exciton changes to linear, just like the neutral exciton. This change in power dependence is explained in terms of electrons in potential traps close to the QD escaping by thermal excitation, leading to a surplus of electrons in the vicinity of the QD. Consequently, only a single exciton needs to be created by photoexcitation in order to form a negatively charged exciton, while the extra electron is supplied to the QD by thermal excitation.

Upon a close inspection of the PL of the neutral exciton, a splitting of the peak of just below 0.4 meV is revealed. There is an observed competition in the integrated intensity between these two peaks, similar to that between an exciton and a biexciton. The high energy peak of this split exciton emission is explained in terms of a remotely charged exciton. This exciton state consists of a neutral single exciton in the QD with an extra electron or hole in close vicinity of the QD, which screens the built-in field in the QD.

The InGaN QDs are very small; estimated to be on the order of the exciton Bohr radius of the InGaN crystal, or even smaller. The lifetimes of the neutral exciton and the negatively charged exciton are approximately 320 ps and 130 ps, respectively. The ratio of the lifetimes supports the claim of the QD size being on the order of the exciton Bohr radius or smaller, as is further supported by power dependence results. Under the assumption of a spherical QD, theoretical calculations predict an emission energy shift of 0.7 meV, for a peak at 3.09 eV, due to the built-in field for a QD with a diameter of 1.3 nm, in agreement with the experimental observations.

Studying the InGaN QD PL from neutral and charged excitons at elevated temperatures (4 K to 166 K) has revealed that the QDs are surrounded by potential fluctuations that trap charge carriers with an energy of around 20 meV, to be compared with the exciton trapping energy in the QDs of approximately 50 meV. The confinement of electrons close to the QD is predicted to be smaller than for holes, which accounts for the negative charge of the charged exciton, and for the higher probability of capturing free electrons. We have estimated the lifetimes of free electrons and holes in the GaN barrier to be 45 ps and 60 ps, in consistence with excitons forming quickly in the barrier upon photoexcitation and that free electrons and holes get trapped quickly in local potential traps close to the QDs. This analysis also indicates that there is a probability of 35 % to have an electron in the QD between the photoexcitation pulses, in agreement with a lower than quadratic power dependence of the negatively charged exciton.

InN is an attractive material due to its infrared emission, for applications such as light emitters for communication purposes, but it is more difficult to grow with high quality and low doping concentration as compared to GaN. QDs with a higher In-composition or even pure InN is an interesting prospect as being a route towards increased quantum confinement and room temperature device operation. For all optical devices, p-type doping is needed. Even nominally undoped InN samples tend to be heavily n-type doped, causing problems to make pn-junctions as needed for LEDs. In our work, we present Mg-doped p-type InN films, which when further increasing the Mg-concentration revert to n-type conductivity. We have focused on the effect of the Mg-doping on the light emission properties of these films. The low Mg doped InN film is inhomogeneous and is observed to contain areas with n-type conductivity, so called n-type pockets in the otherwise p-type InN film. A higher concentration of Mg results in a higher crystalline quality and the disappearance of the n-type pockets. The high crystalline quality has enabled us to determine the binding energy of the Mg dopants to 64 meV. Upon further increase of the Mg concentration, the film reverts to ntype conductivity. The highly Mg doped sample also exhibits a red-shifted emission with features that are interpreted as originating from Zinc-Blende inclusions in the Wurtzite InN crystal, acting as quantum wells. The Mg doping is an important factor in controlling the conductivity of InN, as well as its light emission properties, and ultimately construct InN-based devices.

In summary, in this thesis, both pyramidal InGaN QDs and InGaN QDs in a QW have been investigated. Novel discoveries of exciton complexes in these QD systems have been reported. Knowledge has also been gained about the challenging material InN, including a study of the effect of the Mg-doping concentration on the semiconductor crystalline quality and its light emission properties. The outcome of this thesis enriches the knowledge of the III-Nitride semiconductor community, with the long-term objective to improve the device performance of III-Nitride based light emitting devices.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2017. , p. 45
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1867
National Category
Condensed Matter Physics Atom and Molecular Physics and Optics Other Physics Topics Theoretical Chemistry Materials Chemistry
Identifiers
URN: urn:nbn:se:liu:diva-139766DOI: 10.3384/diss.diva-139766ISBN: 978-91-7685-487-7 (print)OAI: oai:DiVA.org:liu-139766DiVA, id: diva2:1131647
Public defence
2017-09-04, Planck, Fysikhuset, Campus Valla, Linköping, 10:15 (English)
Opponent
Supervisors
Available from: 2017-08-15 Created: 2017-08-15 Last updated: 2019-10-11Bibliographically approved
List of papers
1. InGaN quantum dot formation mechanism on hexagonal GaN/InGaN/GaN pyramids
Open this publication in new window or tab >>InGaN quantum dot formation mechanism on hexagonal GaN/InGaN/GaN pyramids
Show others...
2012 (English)In: Nanotechnology, ISSN 0957-4484, E-ISSN 1361-6528, Vol. 23, no 30, p. 305708-Article in journal (Refereed) Published
Abstract [en]

Growing InGaN quantum dots (QDs) at the apex of hexagonal GaN pyramids is an elegant approach to achieve a deterministic positioning of QDs. Despite similar synthesis procedures by metal–organic chemical vapor deposition, the optical properties of the QDs reported in the literature vary drastically. The QDs tend to exhibit either narrow or broad emission lines in the micro-photoluminescence spectra. By coupled microstructural and optical investigations, the QDs giving rise to narrow emission lines were concluded to nucleate in association with a (0001) facet at the apex of the GaN pyramid.

Place, publisher, year, edition, pages
Institute of Physics (IOP), 2012
National Category
Atom and Molecular Physics and Optics
Identifiers
urn:nbn:se:liu:diva-79321 (URN)10.1088/0957-4484/23/30/305708 (DOI)000306333500030 ()
Available from: 2012-07-10 Created: 2012-07-10 Last updated: 2017-12-07Bibliographically approved
2. Dynamic characteristics of the exciton and the biexciton in a single InGaN quantum dot
Open this publication in new window or tab >>Dynamic characteristics of the exciton and the biexciton in a single InGaN quantum dot
Show others...
2012 (English)In: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 101, no 6Article in journal (Refereed) Published
Abstract [en]

The dynamics of the exciton and the biexciton related emission from a single InGaN quantum dot (QD) have been measured by time-resolved microphotoluminescence spectroscopy. An exciton-biexciton pair of the same QD was identified by the combination of power dependence and polarization-resolved spectroscopy. Moreover, the spectral temperature evolution was utilized in order to distinguish the biexciton from a trion. Both the exciton and the biexciton related emission reveal mono-exponential decays corresponding to time constants of similar to 900 and similar to 500 ps, respectively. The obtained lifetime ratio of similar to 1.8 indicates that the QD is small, with a size comparable to the exciton Bohr radius.

Place, publisher, year, edition, pages
American Institute of Physics (AIP), 2012
National Category
Engineering and Technology
Identifiers
urn:nbn:se:liu:diva-84908 (URN)10.1063/1.4742343 (DOI)000307862400022 ()
Note

Funding Agencies|Thaksin University in Thailand||Swedish Research Council (VR)||Swedish Foundation for Strategic Research (SSF)||Knut and Alice Wallenberg Foundation||

Available from: 2012-10-26 Created: 2012-10-26 Last updated: 2017-12-07
3. The charged exciton in an InGaN quantum dot on a GaN pyramid
Open this publication in new window or tab >>The charged exciton in an InGaN quantum dot on a GaN pyramid
Show others...
2013 (English)In: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 103, no 1Article in journal (Refereed) Published
Abstract [en]

The emission of a charged exciton in an InGaN quantum dot (QD) on top of a GaN pyramid is identified experimentally. The intensity of the charged exciton exhibits the expected competition with that of the single exciton, as observed in temperature-dependent micro-photoluminescence measurements, performed with different excitation energies. The non-zero charge state of this complex is further supported by time resolved micro-photoluminescence measurements, which excludes neutral alternatives of biexciton. The potential fluctuations in the vicinity of the QD that localizes the charge carriers are proposed to be responsible for the unequal supply of electrons and holes into the QD.

Place, publisher, year, edition, pages
American Institute of Physics (AIP), 2013
National Category
Engineering and Technology
Identifiers
urn:nbn:se:liu:diva-95961 (URN)10.1063/1.4812984 (DOI)000321497200036 ()
Note

Funding Agencies|NANO-N consortium||Swedish Foundation for Strategic Research (SSF)||

Available from: 2013-08-19 Created: 2013-08-12 Last updated: 2017-12-06

Open Access in DiVA

fulltext(2599 kB)952 downloads
File information
File name FULLTEXT01.pdfFile size 2599 kBChecksum SHA-512
10773bc89dca33c14cc8632e8642f384f694377e47f4bc1e92fed9b3252b352070ef757b68775ea4023513c66cabf3d425932896bfbc3ce7387c599467b8ac37
Type fulltextMimetype application/pdf
omslag(3038 kB)80 downloads
File information
File name COVER01.pdfFile size 3038 kBChecksum SHA-512
904151e12bbcf09b3b34f214b68b6bbedfabc5268f632e2a8a860a7ec51ee21b96e834136ac887b24f53ad54b9de523a3e09c48b4832169f2c9fefd95f0c0e48
Type coverMimetype application/pdf
Order online >>

Other links

Publisher's full text

Search in DiVA

By author/editor
Eriksson, Martin
By organisation
Semiconductor MaterialsFaculty of Science & Engineering
Condensed Matter PhysicsAtom and Molecular Physics and OpticsOther Physics TopicsTheoretical ChemistryMaterials Chemistry

Search outside of DiVA

GoogleGoogle Scholar
Total: 953 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 1679 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf