liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Bayesian Diffusion Tensor Estimation with Spatial Priors
Linköpings universitet, Institutionen för medicinsk teknik, Avdelningen för medicinsk teknik. Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV.
Linköpings universitet, Institutionen för datavetenskap, Statistik och maskininlärning. Linköpings universitet, Tekniska fakulteten.
Linköpings universitet, Institutionen för datavetenskap, Statistik och maskininlärning. Linköpings universitet, Tekniska fakulteten.ORCID-id: 0000-0003-2193-6003
Linköpings universitet, Institutionen för medicinsk teknik, Avdelningen för medicinsk teknik. Linköpings universitet, Institutionen för datavetenskap, Statistik och maskininlärning. Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV.
Vise andre og tillknytning
2017 (engelsk)Inngår i: CAIP 2017: Computer Analysis of Images and Patterns, 2017, Vol. 10424, s. 372-383Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Spatial regularization is a technique that exploits the dependence between nearby regions to locally pool data, with the effect of reducing noise and implicitly smoothing the data. Most of the currently proposed methods are focused on minimizing a cost function, during which the regularization parameter must be tuned in order to find the optimal solution. We propose a fast Markov chain Monte Carlo (MCMC) method for diffusion tensor estimation, for both 2D and 3D priors data. The regularization parameter is jointly with the tensor using MCMC. We compare FA (fractional anisotropy) maps for various b-values using three diffusion tensor estimation methods: least-squares and MCMC with and without spatial priors. Coefficient of variation (CV) is calculated to measure the uncertainty of the FA maps calculated from the MCMC samples, and our results show that the MCMC algorithm with spatial priors provides a denoising effect and reduces the uncertainty of the MCMC samples.

sted, utgiver, år, opplag, sider
2017. Vol. 10424, s. 372-383
Serie
Lecture Notes in Computer Science, ISSN 0302-9743, E-ISSN 1611-3349 ; 10424
Emneord [en]
Spatial regularization, Diffusion tensor, Spatial priors Markov chain, Monte Carlo Fractional anisotropy
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-139844DOI: 10.1007/978-3-319-64689-3_30ISI: 000432085900030ISBN: 978-3-319-64689-3 (digital)ISBN: 978-3-319-64688-6 (tryckt)OAI: oai:DiVA.org:liu-139844DiVA, id: diva2:1133926
Konferanse
International Conference on Computer Analysis of Images and Patterns
Merknad

Funding agencies: Information Technology for European Advancement (ITEA) 3 Project BENEFIT (better effectiveness and efficiency by measuring and modelling of interventional therapy); Swedish Research Council [2015-05356, 2013-5229]; National Institute of Dental and Craniof

Tilgjengelig fra: 2017-08-17 Laget: 2017-08-17 Sist oppdatert: 2019-11-19
Inngår i avhandling
1. Advanced analysis of diffusion MRI data
Åpne denne publikasjonen i ny fane eller vindu >>Advanced analysis of diffusion MRI data
2019 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Diffusion magnetic resonance imaging (diffusion MRI) is a non-invasive imaging modality which can measure diffusion of water molecules, by making the MRI acquisition sensitive to diffusion. Diffusion MRI provides unique possibilities to study structural connectivity of the human brain, e.g. how the white matter connects different parts of the brain. Diffusion MRI enables a range of tools that permit qualitative and quantitative assessments of many neurological disorders, such as stroke and Parkinson.

This thesis introduces novel methods for diffusion MRI data analysis. Prior to estimating a diffusion model in each location (voxel) of the brain, the diffusion data needs to be preprocessed to correct for geometric distortions and head motion. A deep learning approach to synthesize diffusion scalar maps from a T1-weighted MR image is proposed, and it is shown that the distortion-free synthesized images can be used for distortion correction. An evaluation, involving both simulated data and real data, of six methods for susceptibility distortion correction is also presented in this thesis.

A common problem in diffusion MRI is to estimate the uncertainty of a diffusion model. An empirical evaluation of tractography, a technique that permits reconstruction of white matter pathways in the human brain, is presented in this thesis. The evaluation is based on analyzing 32 diffusion datasets from a single healthy subject, to study how reliable tractography is. In most cases only a single dataset is available for each subject. This thesis presents methods based on frequentistic (bootstrap) as well as Bayesian inference, which can provide uncertainty estimates when only a single dataset is available. These uncertainty measures can then, for example, be used in a group analysis to downweight subjects with a higher uncertainty.

sted, utgiver, år, opplag, sider
Linköping: Linköping University Electronic Press, 2019. s. 93
Serie
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 2017
Emneord
Diffusion MRI, Distortion Correction, Deep Learning, Uncertainty Estimation
HSV kategori
Identifikatorer
urn:nbn:se:liu:diva-161288 (URN)10.3384/diss.diva-161288 (DOI)9789175190037 (ISBN)
Disputas
2019-12-06, Hugo Theorell, Building 448, Campus US, Linköping, 13:15 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2019-11-19 Laget: 2019-11-19 Sist oppdatert: 2019-11-19bibliografisk kontrollert

Open Access i DiVA

fulltext(2748 kB)398 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 2748 kBChecksum SHA-512
7e6bd6b4a5bb9bb757ddc1989dda3d776ed7efb4fc517a8b50119add552cb3f82a521658cab8b2657f25c73e89b31d0f302a2d1f274375372bf25cedcb123d3c
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekst

Person

Gu, XuanSidén, PerWegmann, BertilEklund, AndersVillani, MattiasKnutsson, Hans

Søk i DiVA

Av forfatter/redaktør
Gu, XuanSidén, PerWegmann, BertilEklund, AndersVillani, MattiasKnutsson, Hans
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 398 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 359 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf