liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Scaling of elongation transition thickness during thin-film growth on weakly interacting substrates
Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanodesign. Linköpings universitet, Tekniska fakulteten.ORCID-id: 0000-0002-0908-7187
Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanodesign. Linköpings universitet, Tekniska fakulteten.ORCID-id: 0000-0003-4811-478X
Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanodesign. Linköpings universitet, Tekniska fakulteten.ORCID-id: 0000-0003-2864-9509
2017 (Engelska)Ingår i: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 111, nr 8, artikel-id 084101Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The elongation transition thickness (hElong) is a central concept in the theoretical description of thin-film growth dynamics on weakly interacting substrates via scaling relations of hElong with respect to rates of key atomistic film-forming processes. To date, these scaling laws have only been confirmed quantitatively by simulations, while experimental proof has been left ambiguous as it has not been possible to measure hElong. Here, we present a method for determining experimentally hElong for Ag films growing on amorphous SiO2: an archetypical weakly interacting film/substrate system. Our results confirm the theoretically predicted hElong scaling behavior, which then allow us to calculate the rates of adatom diffusion and island coalescence completion, in good agreement with the literature. The methodology presented herein casts the foundation for studying growth dynamics and cataloging atomistic-process rates for a wide range of weakly interacting film/substrate systems. This may provide insights into directed growth of metal films with a well-controlled morphology and interfacial structure on 2D crystals-including graphene and MoS2-for catalytic and nanoelectronic applications. Published by AIP Publishing.

Ort, förlag, år, upplaga, sidor
American Institute of Physics (AIP), 2017. Vol. 111, nr 8, artikel-id 084101
Nationell ämneskategori
Den kondenserade materiens fysik
Identifikatorer
URN: urn:nbn:se:liu:diva-140966DOI: 10.1063/1.4993252ISI: 000408570000044Scopus ID: 2-s2.0-85028308625OAI: oai:DiVA.org:liu-140966DiVA, id: diva2:1142323
Anmärkning

Funding Agencies|Linkoping University (LiU) [Dnr-LiU-2015-01510]; Swedish research council [VR-2011-5312, VR-2015-04630]; Swedish National Infrastructure for Computing (SNIC) at the National Supercomputer Centre (NSC)

Tillgänglig från: 2017-09-19 Skapad: 2017-09-19 Senast uppdaterad: 2018-01-11Bibliografiskt granskad
Ingår i avhandling
1. Nano- and mesoscale morphology evolution of metal films on weakly-interacting surfaces
Öppna denna publikation i ny flik eller fönster >>Nano- and mesoscale morphology evolution of metal films on weakly-interacting surfaces
2018 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Thin films are structures consisting of one or several nanoscale atomic layers of material that are used to either functionalize a surface or constitute components in more complex devices. Many properties of a film are closely related to its microstructure, which allows films to be tailored to meet specific technological requirements. Atom-by-atom film growth from the vapor phase involves a multitude of atomic processes that may not be easily studied experimentally in real-time because they occur in small length- (≤ Å) and timescales (≤ ns). Therefore, different types of computer simulation methods have been developed in order to test theoretical models of thin film growth and unravel what experiments cannot show. In order to compare simulated and experimental results, the simulations must be able to model events on experimental time-scales, i.e. on the order of microseconds to seconds. This is achievable with the kinetic Monte Carlo (kMC) method.

In this work, the initial growth stages of metal deposition on weakly-interacting substrates is studied using both kMC simulations as well as experiments whereby growth was monitored using in situ probes. Such film/substrate material combinations are widely encountered in technological applications including low-emissivity window coatings to parts of microelectronics components. In the first part of this work, a kMC algorithm was developed to model the growth processes of island nucleation, growth and coalescence when these are functions of deposition parameters such as the vapor deposition rate and substrate temperature. The dynamic interplay between these growth processes was studied in terms of the scaling behavior of the film thickness at the elongation transition, for both continuous and pulsed deposition fluxes, and revealed in both cases two distinct growth regimes in which coalescence is either active or frozen out during deposition. These growth regimes were subsequently confirmed in growth experiments of Ag on SiO2, again for both pulsed and continuous deposition, by measuring the percolation thickness as well as the continuous film formation thickness. However, quantitative agreement with regards to scaling exponents in the two growth regimes was not found between simulations and experiments, and this prompted the development of a method to determine the elongation transition thickness experimentally. Using this method, the elongation transition of Ag on SiO2 was measured, with scaling exponents found in much better agreement with the simulation results. Further, these measurement data also allowed the calculation of surface properties such as the terrace diffusion barrier of Ag on SiO2 and the average island coalescence rate.

In the second part of this thesis, pioneering work is done to develop a fully atomistic, on-lattice model which describes the growth of Ag on weakly-interacting substrates. Simulations performed using this model revealed several key atomic-scale processes occurring at the film/substrate interface and on islands which govern island shape evolution, thereby contributing to a better understanding of how 3D island growth occurs at the atomic scale for a wide class of materials. The latter provides insights into the directed growth of metal nanostructures with controlled shapes on weakly-interacting substrates, including twodimensional crystals for use in catalytic and nano-electronic applications.

Ort, förlag, år, upplaga, sidor
Linköping: Linköping University Electronic Press, 2018. s. 68
Serie
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1835
Nationell ämneskategori
Annan materialteknik
Identifikatorer
urn:nbn:se:liu:diva-144217 (URN)10.3384/diss.diva-144217 (DOI)9789176855706 (ISBN)
Disputation
2018-02-02, Planck, Fysikhuset, Campus Valla, Linköping, 10:15 (Engelska)
Opponent
Handledare
Forskningsfinansiär
VetenskapsrådetÅForsk (Ångpanneföreningens Forskningsstiftelse)
Anmärkning

I den tryckta versionen saknades den populärvetenskapliga sammanfattningen på svenska. I den elektroniska versionen är den tillagd mellan Abstract (sida II) och Preface (sida III).

Tillgänglig från: 2018-01-11 Skapad: 2018-01-11 Senast uppdaterad: 2019-09-30Bibliografiskt granskad

Open Access i DiVA

fulltext(1148 kB)79 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1148 kBChecksumma SHA-512
71d186d8500a59bdd7a211b3a1019e2ea5f69fc806820868f9574ea26f7b477051880400625128963aa348a7dbb70181290131b5890d9faaca99200f6bd4adfc
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Lü, Bo

Sök vidare i DiVA

Av författaren/redaktören
Lü, BoSouqui, LaurentElofsson, ViktorSarakinos, Kostas
Av organisationen
NanodesignTekniska fakultetenTunnfilmsfysik
I samma tidskrift
Applied Physics Letters
Den kondenserade materiens fysik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 79 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 168 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf