liu.seSearch for publications in DiVA

Jump to content
Change search PrimeFaces.cw("Fieldset","widget_formSmash_search",{id:"formSmash:search",widgetVar:"widget_formSmash_search",toggleable:true,collapsed:true,toggleSpeed:500,behaviors:{toggle:function(ext) {PrimeFaces.ab({s:"formSmash:search",e:"toggle",f:"formSmash",p:"formSmash:search"},ext);}}});
$(function(){PrimeFaces.cw("Dialog","citationDialog",{id:"formSmash:upper:j_idt266",widgetVar:"citationDialog",width:"800",height:"600"});});
$(function(){PrimeFaces.cw("ImageSwitch","widget_formSmash_j_idt1191",{id:"formSmash:j_idt1191",widgetVar:"widget_formSmash_j_idt1191",fx:"fade",speed:500,timeout:8000},"imageswitch");});
#### Open Access in DiVA

No full text in DiVA
#### Other links

Publisher's full textLink to pre-print full text in ArXiv.org
#### Authority records

Löbus, Jörg-Uwe
#### Search in DiVA

##### By author/editor

Löbus, Jörg-Uwe
##### By organisation

Mathematical Statistics Faculty of Science & Engineering
##### In the same journal

Memoirs of the American Mathematical Society
On the subject

Mathematics
#### Search outside of DiVA

GoogleGoogle ScholarfindCitings = function() {PrimeFaces.ab({s:"formSmash:j_idt1462",f:"formSmash",u:"formSmash:citings",pa:arguments[0]});};$(function() {findCitings();}); $(function(){PrimeFaces.cw('Chart','widget_formSmash_visits',{id:'formSmash:visits',type:'bar',responsive:true,data:[[6,4,6,3,6,13,11,5,1,1]],title:"Visits for this publication",axes:{yaxis: {label:"",min:0,max:20,renderer:$.jqplot.LinearAxisRenderer,tickOptions:{angle:0}},xaxis: {label:"",renderer:$.jqplot.CategoryAxisRenderer,tickOptions:{angle:-90}}},series:[{label:'diva2:1146787'}],ticks:["Nov -23","Dec -23","Jan -24","Feb -24","Mar -24","Apr -24","May -24","Jun -24","Aug -24","Sep -24"],orientation:"vertical",barMargin:3,datatip:true,datatipFormat:"<span style=\"display:none;\">%2$d</span><span>%2$d</span>"},'charts');}); Total: 215 hits
$(function(){PrimeFaces.cw("Dialog","citationDialog",{id:"formSmash:lower:j_idt1555",widgetVar:"citationDialog",width:"800",height:"600"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt238",{id:"formSmash:upper:j_idt238",widgetVar:"widget_formSmash_upper_j_idt238",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt241_j_idt243",{id:"formSmash:upper:j_idt241:j_idt243",widgetVar:"widget_formSmash_upper_j_idt241_j_idt243",target:"formSmash:upper:j_idt241:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Absolute Continuity under Time Shift of Trajectories and Related Stochastic CalculusPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2017 (English)In: Memoirs of the American Mathematical Society, ISSN 0065-9266, E-ISSN 1947-6221, Vol. 249, no 1185, p. 1-135Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

American Mathematical Society (AMS), 2017. Vol. 249, no 1185, p. 1-135
##### Keywords [en]

Non-linear transformation of measures, anticipative stochastic calculus, Brownian motion, jump processes
##### National Category

Mathematics
##### Identifiers

URN: urn:nbn:se:liu:diva-141626DOI: 10.1090/memo/1185ISI: 000412226700001OAI: oai:DiVA.org:liu-141626DiVA, id: diva2:1146787
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt588",{id:"formSmash:j_idt588",widgetVar:"widget_formSmash_j_idt588",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt594",{id:"formSmash:j_idt594",widgetVar:"widget_formSmash_j_idt594",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt600",{id:"formSmash:j_idt600",widgetVar:"widget_formSmash_j_idt600",multiple:true});
##### Note

The text is concerned with a class of two-sided stochastic processes of the form . Here is a two-sided Brownian motion with random initial data at time zero and is a function of . Elements of the related stochastic calculus are introduced. In particular, the calculus is adjusted to the case when is a jump process. Absolute continuity of under time shift of trajectories is investigated. For example under various conditions on the initial density with respect to the Lebesgue measure, , and on with we verifya.e. where the product is taken over all coordinates. Here is the divergence of with respect to the initial position. Crucial for this is the *t*emporal homogeneity of in the sense that , , where is the trajectory taking the constant value .By means of such a density, partial integration relative to a generator type operator of the process is established. Relative compactness of sequences of such processes is established.

**Chapters**

Chapter 1. Introduction, Basic Objects, and Main Result

Chapter 2. Flows and Logarithmic Derivative Relative to X" role="presentation">X under Orthogonal Projection

Chapter 3. The Density Formula

Chapter 4. Partial Integration

Chapter 5. Relative Compactness of Particle Systems

Appendix A. Basic Malliavin Calculus for Brownian Motion with Random Initial Data

ISBN: 978-1-4704-2603-3 (print); 978-1-4704-4137-1 (online).

Available from: 2017-10-04 Created: 2017-10-04 Last updated: 2018-03-16Bibliographically approved
doi
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1484",{id:"formSmash:j_idt1484",widgetVar:"widget_formSmash_j_idt1484",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1537",{id:"formSmash:lower:j_idt1537",widgetVar:"widget_formSmash_lower_j_idt1537",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1538_j_idt1540",{id:"formSmash:lower:j_idt1538:j_idt1540",widgetVar:"widget_formSmash_lower_j_idt1538_j_idt1540",target:"formSmash:lower:j_idt1538:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});