liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Absolute Continuity under Time Shift of Trajectories and Related Stochastic Calculus
Linköpings universitet, Matematiska institutionen, Matematisk statistik. Linköpings universitet, Tekniska fakulteten.
2017 (engelsk)Inngår i: Memoirs of the American Mathematical Society, ISSN 0065-9266, E-ISSN 1947-6221, Vol. 249, nr 1185, s. 1-135Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The text is concerned with a class of two-sided stochastic processes of the form . Here is a two-sided Brownian motion with random initial data at time zero and is a function of . Elements of the related stochastic calculus are introduced. In particular, the calculus is adjusted to the case when is a jump process. Absolute continuity of under time shift of trajectories is investigated. For example under various conditions on the initial density with respect to the Lebesgue measure, , and on with we verifya.e. where the product is taken over all coordinates. Here is the divergence of with respect to the initial position. Crucial for this is the temporal homogeneity of in the sense that , , where is the trajectory taking the constant value .By means of such a density, partial integration relative to a generator type operator of the process is established. Relative compactness of sequences of such processes is established.

sted, utgiver, år, opplag, sider
American Mathematical Society (AMS), 2017. Vol. 249, nr 1185, s. 1-135
Emneord [en]
Non-linear transformation of measures, anticipative stochastic calculus, Brownian motion, jump processes
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-141626DOI: 10.1090/memo/1185ISI: 000412226700001OAI: oai:DiVA.org:liu-141626DiVA, id: diva2:1146787
Merknad

Chapters

Chapter 1. Introduction, Basic Objects, and Main Result

Chapter 2. Flows and Logarithmic Derivative Relative to X" role="presentation">X under Orthogonal Projection

Chapter 3. The Density Formula

Chapter 4. Partial Integration

Chapter 5. Relative Compactness of Particle Systems

Appendix A. Basic Malliavin Calculus for Brownian Motion with Random Initial Data

ISBN: 978-1-4704-2603-3 (print); 978-1-4704-4137-1 (online).

Tilgjengelig fra: 2017-10-04 Laget: 2017-10-04 Sist oppdatert: 2018-03-16bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstLink to pre-print full text in ArXiv.org

Person

Löbus, Jörg-Uwe

Søk i DiVA

Av forfatter/redaktør
Löbus, Jörg-Uwe
Av organisasjonen
I samme tidsskrift
Memoirs of the American Mathematical Society

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 215 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf