liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Maximum Throughput Scheduling for Multi-connectivity in Millimeter-Wave Networks
Linköping University, Department of Science and Technology, Communications and Transport Systems. Linköping University, Faculty of Science & Engineering.
Nokia Bell Labs, Stuttgart, Germany.
Linköping University, Department of Science and Technology, Communications and Transport Systems. Linköping University, Faculty of Science & Engineering. (Mobile Telecommunications)ORCID iD: 0000-0003-4416-7702
Linköping University, Department of Science and Technology, Communications and Transport Systems. Linköping University, Faculty of Science & Engineering.
2018 (English)In: 16th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt): International Workshop on Resource Allocation, Cooperation and Competition in Wireless Networks (RAWNET), IEEE, 2018Conference paper, Published paper (Refereed)
Abstract [en]

Multi-connectivity is emerging as promising solution to provide reliable communications and seamless connectivity at the millimeter-wave frequency range. Due to the obstacles that cause frequent interruptions at such high frequency range, connectivity to multiple cells can drastically increase the network performance in terms of throughput and reliability by coordi- nation among the network elements. In this paper, we propose an algorithm for the link scheduling optimization that maximizes the network throughput for multi-connectivity in millimeter-wave cellular networks. The considered approach exploits a centralized architecture, fast link switching, proactive context preparation and data forwarding between millimeter-wave access points and the users. The proposed algorithm is able to numerically approach the global optimum and to quantify the potential gain of multi-connectivity in millimeter-wave cellular networks. 

Place, publisher, year, edition, pages
IEEE, 2018.
National Category
Communication Systems Telecommunications
Identifiers
URN: urn:nbn:se:liu:diva-146211DOI: 10.23919/WIOPT.2018.8362891ISI: 000434872700066ISBN: 9783903176003 (electronic)ISBN: 9781538646212 (print)OAI: oai:DiVA.org:liu-146211DiVA, id: diva2:1194398
Conference
16th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt), Shanghai, China, May 7-11, 2018
Funder
ELLIIT - The Linköping‐Lund Initiative on IT and Mobile CommunicationsEU, Horizon 2020, 643002
Note

Funding agencies: European Unions Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant [643002]; CENIIT

Available from: 2018-04-02 Created: 2018-04-02 Last updated: 2018-09-28
In thesis
1. Performance Aspects in Millimeter-Wave Wireless  Networks
Open this publication in new window or tab >>Performance Aspects in Millimeter-Wave Wireless  Networks
2018 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

The ever-growing data rate and comunications demand pose more challenges for the upcoming generations of mobile communications, i.e., fifth generation (5G) and beyond. To deal with these challenges, several solutions can be deployed, e.g., the use of massive amount of antennas at the transmitter and receiver nodes, the increase of cell density and the increase of the spectrum resources. More precisely, most of the current mobile networks and telecom operators mainly operate from 800 MHz to 6 GHz, however, this frequency range is probably not enough to face the growing traffic demand. For this reason, in the last years, communications in the millimeterwave (mm-wave) frequency range (30-300 GHz) have attracted the interest of many researchers, who consider mm-wave communications a promising solution to deal with the longstanding problem of spectrum scarcity. However, in comparison to lower frequency communications, the signal propagation in the mm-wave frequency range is subject to more challenging conditions. The latter lead to frequent transmission interruptions when the signal path between the transmitter and the receiver, usually line-of-sight (LOS), is blocked. In this thesis, we present three papers that study several aspects of the mm-wave wireless networks and potential solutions to overcome the blockage issue and increase the reliability for the mm-wave communications. The first work studies the contribution of the reected beams for the communications in non line-of-sight (NLOS). This work provides a stochastic model that is able to evaluate the coverage probability not only considering the direct beam, but also including first order reections, which may contribute to the coverage probability in NLOS.

The second paper analyzes a possible solution to overcome the blockage issue that is the multi-connectivity (MC). This technique allows the user equipments (UEs) to establish and maintain connections with multiple cells/access points at the same time and it increases the number of possible available links per UE. In this scenario, we propose a novel link scheduling algorithm for network throughput maximization, and quantify the potential gain of MC for mm-wave cellular networks. The proposed algorithm is able to numerically approach the global optimum and overtakes the single connectivity schema in terms of network throughput.

Finally, in the third paper, we study a complementary approach to the multi-connectivity schema, i.e., the relying technique. In this work, we perform a throughput analysis of a relay-aided mm-wave wireless network. We consider two possible transmission strategies, by which the source nodes transmit either a packet to both the destination and the relay in the same timeslot (broadcast) or to only one of these two (destination or relay) by using directional transmissions. We analyze and show the optimal transmission strategy with respect to several system parameters, e.g., positions and number of the nodes, by taking into account the different beamforming gains and interference levels of the possible transmission strategies.  

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2018. p. 22
Series
Linköping Studies in Science and Technology. Licentiate Thesis, ISSN 0280-7971 ; 1821
National Category
Communication Systems
Identifiers
urn:nbn:se:liu:diva-151660 (URN)9789176852088 (ISBN)
Presentation
2018-10-03, TP54, Täppan, Campus Norrköping, Norrköping, 09:15 (English)
Opponent
Supervisors
Available from: 2018-09-28 Created: 2018-09-28 Last updated: 2019-05-09Bibliographically approved

Open Access in DiVA

fulltext(410 kB)144 downloads
File information
File name FULLTEXT03.pdfFile size 410 kBChecksum SHA-512
543e9f975c50b82797ed4135661adef602ac818856fb30c549299a63e6951ed5951e2a81cf2efcaf30f1f5b13a3ff0c716e0153854d09468ffba70754e658db2
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Authority records BETA

Tatino, CristianPappas, NikolaosYuan, Di

Search in DiVA

By author/editor
Tatino, CristianPappas, NikolaosYuan, Di
By organisation
Communications and Transport SystemsFaculty of Science & Engineering
Communication SystemsTelecommunications

Search outside of DiVA

GoogleGoogle Scholar
Total: 144 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 135 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf