liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Statistical differences in the white matter tracts in subjects with depression by using different skeletonized voxel-wise analysis approaches and DTI fitting procedures
Laureate Institute for Brain Research, Tulsa, OK, USA.
Roosevelt University, Department of Industrial and Organizational Psychology, Chicago, IL, USA.
Laureate Institute for Brain Research, Tulsa, OK, USA.
Linköpings universitet, Institutionen för klinisk och experimentell medicin, Centrum för social och affektiv neurovetenskap. Linköpings universitet, Medicinska fakulteten.
Visa övriga samt affilieringar
2017 (Engelska)Ingår i: Brain Research, ISSN 0006-8993, E-ISSN 1872-6240, Vol. 1669, s. 131-140Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Major depressive disorder (MDD) is one of the most significant contributors to the global burden of illness. Diffusion tensor imaging (DTI) is a procedure that has been used in several studies to characterize abnormalities in white matter (WM) microstructural integrity in MDD. These studies, however, have provided divergent findings, potentially due to the large variety of methodological alternatives available in conducting DTI research. In order to determine the importance of different approaches to coregistration of DTI-derived metrics to a standard space, we compared results from two different skeletonized voxel-wise analysis approaches: the standard TBBS pipeline and the Advanced Normalization Tools (ANTs) approach incorporating a symmetric image normalization (SyN) algorithm and a group-wise template (ANTs TBSS). We also assessed effects of applying twelve different fitting procedures for the diffusion tensor. For our dataset, lower fractional anisotropy (FA) and axial diffusivity (AD) in depressed subjects compared with healthy controls were found for both methods and for all fitting procedures. No group differences were found for radial and mean diffusivity indices. Importantly, for the AD metric, the normalization methods and fitting procedures showed reliable differences, both in the volume and in the number of significant between-groups difference clusters detected. Additionally, a significant voxel-based correlation, in the left inferior fronto-occipital fasciculus, between AD and self-reported stress was found only for one of the normalization procedure (ANTs TBSS). In conclusion, the sensitivity to detect group-level effects on DTI metrics might depend on the DTI normalization and/or tensor fitting procedures used.

Ort, förlag, år, upplaga, sidor
Elsevier, 2017. Vol. 1669, s. 131-140
Nyckelord [en]
ANTs; DTI fitting algorithms; Diffusion tensor imaging; Major depressive disorder; TBSS
Nationell ämneskategori
Bioinformatik och systembiologi
Identifikatorer
URN: urn:nbn:se:liu:diva-146289DOI: 10.1016/j.brainres.2017.06.013ISI: 000406729700016PubMedID: 28629742OAI: oai:DiVA.org:liu-146289DiVA, id: diva2:1195919
Tillgänglig från: 2018-04-07 Skapad: 2018-04-07 Senast uppdaterad: 2019-02-11

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMed

Personposter BETA

Hamilton, Paul J.

Sök vidare i DiVA

Av författaren/redaktören
Paul, ElisabethHamilton, Paul J.
Av organisationen
Centrum för social och affektiv neurovetenskapMedicinska fakulteten
I samma tidskrift
Brain Research
Bioinformatik och systembiologi

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 223 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf