liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Wide-field corneal subbasal nerve plexus mosaics in age-controlled healthy and type 2 diabetes populations
Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för neuro- och inflammationsvetenskap. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Sinnescentrum, Ögonkliniken US/LiM.ORCID-id: 0000-0003-1079-4361
Karlsruhe Inst Technol, Germany.
Univ Padua, Italy.
Univ Coll Southeast Norway, Norway; Oslo Univ Hosp, Norway; Univ Oslo, Norway.
Visa övriga samt affilieringar
2018 (Engelska)Ingår i: Scientific Data, E-ISSN 2052-4463, Vol. 5, artikel-id 180075Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

A dense nerve plexus in the clear outer window of the eye, the cornea, can be imaged in vivo to enable non-invasive monitoring of peripheral nerve degeneration in diabetes. However, a limited field of view of corneal nerves, operator-dependent image quality, and subjective image sampling methods have led to difficulty in establishing robust diagnostic measures relating to the progression of diabetes and its complications. Here, we use machine-based algorithms to provide wide-area mosaics of the corneas subbasal nerve plexus (SBP) also accounting for depth (axial) fluctuation of the plexus. Degradation of the SBP with age has been mitigated as a confounding factor by providing a dataset comprising healthy and type 2 diabetes subjects of the same age. To maximize reuse, the dataset includes bilateral eye data, associated clinical parameters, and machine-generated SBP nerve density values obtained through automatic segmentation and nerve tracing algorithms. The dataset can be used to examine nerve degradation patterns to develop tools to non-invasively monitor diabetes progression while avoiding narrow-field imaging and image selection biases.

Ort, förlag, år, upplaga, sidor
Nature Publishing Group, 2018. Vol. 5, artikel-id 180075
Nationell ämneskategori
Oceanografi, hydrologi och vattenresurser
Identifikatorer
URN: urn:nbn:se:liu:diva-147931DOI: 10.1038/sdata.2018.75ISI: 000430690900003PubMedID: 29688226OAI: oai:DiVA.org:liu-147931DiVA, id: diva2:1209546
Anmärkning

Funding Agencies|Vasterbotten County Council; Umea University, Sweden; Skane University Hospital; Lund University, Sweden; Ogonfonden in Sweden; Marie Curie grant from the European Commission [316990]; DFG (German Research Foundation) [KO 5003/1-1]; Helmholtz Association, Germany

Tillgänglig från: 2018-05-23 Skapad: 2018-05-23 Senast uppdaterad: 2019-01-22Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMedLink to reserach data SBP Mosaic Dataset

Sök vidare i DiVA

Av författaren/redaktören
Lagali, NeilPeebo, Beatrice
Av organisationen
Avdelningen för neuro- och inflammationsvetenskapMedicinska fakultetenÖgonkliniken US/LiM
I samma tidskrift
Scientific Data
Oceanografi, hydrologi och vattenresurser

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 117 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf