liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
General Observation of Photocatalytic Oxygen Reduction to Hydrogen Peroxide by Organic Semiconductor Thin Films and Colloidal Crystals
Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
Friedrich Alexander Univ Erlangen Nurnberg, Germany; Energie Campus Nurnberg EnCN, Germany.
Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
Politecn Bari, Italy.
Show others and affiliations
2018 (English)In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 10, no 16, p. 13253-13257Article in journal (Refereed) Published
Abstract [en]

Low-cost semiconductor photocatalysts offer unique possibilities for industrial chemical transformations and energy conversion applications. We report that a range of organic semiconductors are capable of efficient photocatalytic oxygen reduction to H2O2 in aqueous conditions. These semiconductors, in the form of thin films, support a 2-electron/2-proton redox cycle involving photoreduction of dissolved O-2 to H2O2, with the concurrent photooxidation of organic substrates: formate, oxalate, and phenol. Photochemical oxygen reduction is observed in a pH range from 2 to 12. In cases where valence band energy of the semiconductor is energetically high, autoxidation competes with oxidation of the donors, and thus turnover numbers are low. Materials with deeper valence band energies afford higher stability and also oxidation of H2O to O-2. We found increased H2O2 evolution rate for surfactant-stabilized nanoparticles versus planar thin films. These results evidence that photochemical O-2 reduction may be a widespread feature of organic semiconductors, and open potential avenues for organic semiconductors for catalytic applications.

Place, publisher, year, edition, pages
AMER CHEMICAL SOC , 2018. Vol. 10, no 16, p. 13253-13257
Keywords [en]
photochemistry; photocatalysis; hydrogen peroxide; organic semiconductors; oxygen reduction reaction; photoanodes
National Category
Materials Chemistry
Identifiers
URN: urn:nbn:se:liu:diva-147927DOI: 10.1021/acsami.8b01295ISI: 000431150900001PubMedID: 29624365OAI: oai:DiVA.org:liu-147927DiVA, id: diva2:1209551
Note

Funding Agencies|Wallenberg Center for Molecular Medicine at Linkoping University; "Aufbruch Bayern" initiative of the state of Bavaria

Available from: 2018-05-23 Created: 2018-05-23 Last updated: 2020-02-25
In thesis
1. Organic electronic materials for hydrogen peroxide production
Open this publication in new window or tab >>Organic electronic materials for hydrogen peroxide production
2020 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Hydrogen peroxide (H2O2) is an important oxidant, used in various fields of industry, such as paper manufacturing, production of polymers, detergents, and cosmetics. Considering that the molecule degrades only to H2O and O2, it is regarded as a green chemical. Unfortunately, the incumbent method of H2O2 synthesis, based on anthraquinone oxidation, although efficient, is not environmentally friendly, as it requires fossil fuels and significant energy input. Therefore, there are efforts underway to reduce the ecological impact of hydrogen peroxide production. Some of the most promising approaches involve catalytic reduction of O2 to H2O2 in an aqueous environment. This can be coupled with water oxidation. As the required energy could be delivered in different ways, hydrogen peroxide synthesis can be achieved by electrocatalysis, photoelectrocatalysis, or photocatalysis.

This thesis explores the possibility of using organic electronic materials as catalysts for H2O2 evolution in oxygenated water solutions. Organic electronics is a field of materials science focused on conducting and semiconducting organic molecules. These materials offer many possible advantages, related to low cost, flexibility, and good optoelectronic properties. Huge progress in the field over the last years led to their commercial applications in e.g. organic light emitting diodes and photovoltaics. Only very recently have organic electronics begun to be considered from the point of view of catalysis.

In the first two papers, we investigate electrocatalytic activity of an organic pigment (PTCDI) and a conducting polymer (PEDOT) towards oxygen reduction to hydrogen peroxide. Both types of catalysts are chemically stable and able to operate in a wide pH range. In paper 3, we demonstrate that H2O2-evolving photocathodes can be based on an organic PN heterojunction, giving devices of a record-breaking performance. In the first part of paper 4, the same concept was tested for a naturally-occurring semiconductor, eumelanin, leading to a first report of photoelectrocatalytic properties of this material. In the second part of paper 4, as well as in papers 5 and 6, we explore, respectively, photochemical hydrogen peroxide synthesis with eumelanin, organic semiconductors, and organic dyes. We show that the photostability of catalysts is higher for materials with low-lying HOMO level and it can be increased by an addition of a reducing agent to the reaction system. Our findings prove that already existing organic electronic materials can be successfully applied in H2O2 evolution for environmentally friendly chemical synthesis, suggesting their use in harvesting of solar energy and in situ generation of hydrogen peroxide for biomedical applications.

Abstract [sv]

Väteperoxid (H2O2) är en viktig oxidant som används inom olika industrier, såsom papperstillverkning och produktion av polymerer, tvättmedel och kosmetika. Med tanke på att molekylen bryts ner till vatten (H2O) och syre (O2) betraktas den som en grön kemikalie. Tyvärr är den befintliga metoden för framställning av H2O2 baserad på oxidation av en antrakinon, en metod som är effektiv, men inte miljövänlig eftersom den kräver fossila bränslen och betydande energitillförsel. Det pågår därför ansträngningar för att minska den ekologiska effekten av väteperoxidproduktionen. Några av de mest lovande metoderna involverar katalytisk O2 till H2O2-reduktion i vattenlösning, kombinerat med vattenoxidation. Eftersom den nödvändiga energin kan levereras på olika sätt kan väteperoxidsyntesen uppnås genom elektrokatalys, fotoelektrokatalys eller fotokatalys.

Denna avhandling undersöker möjligheten att använda organiska elektroniska material som katalysatorer för framställning av H2O2i syresatta vattenlösningar. Organisk elektronik är ett område inom materialvetenskap med fokus på ledande och halvledande organiska molekyler. Dessa material erbjuder många fördelar, såsom låg kostnad, flexibilitet och goda optoelektroniska egenskaper. Enorma framsteg på området har under de senaste åren lett till deras kommersiella tillämpningar i till exempel organiska ljusemitterande dioder och fotovoltaik. Nyligen har också organisk elektronik börjat övervägas ur katalysens synvinkel.

I de två första artiklarna undersöker vi en elektrokatalytisk aktivitet av ett organiskt pigment (PTCDI) och en ledande polymer (PEDOT) i respekt till syrereduktion och väteperoxidproduktion. Båda typerna av katalysatorer är kemiskt stabila och kan arbeta inom ett brett pH-område. I artikel 3 visar vi att H2O2-producerande fotokatoder kan baseras på en organisk PN-gränsyta, vilket ger enheter med en rekordbrytande kapacitet. I den första delen av artikel 4 testades samma koncept för en naturligt förekommande halvledare, eumelanin, vilket ledde till en första rapport om fotoelektrokatalytiska egenskaper hos detta material. I den andra delen av artikel 4, samt i artikel 5 och 6, undersöker vi fotokemisk väteperoxidsyntes med eumelanin, organiska halvledare och organiska färgämnen. Vi visar att fotostabiliteten hos katalysatorer är högre för material med lågt liggande HOMO-nivå och att den kan ökas genom en tillsats av ett reduktionsmedel till reaktionssystemet. Våra fynd visar att redan befintliga organiska elektroniska material framgångsrikt kan tillämpas i H2O2-utvecklingen för miljövänlig kemisk syntes, vilket antyder att de kan användas för att ta tillvara på solenergi och för produktion av väteperoxid inom biomedicin.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2020. p. 92
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 2037
Keywords
hydrogen peroxide, catalysis, organic materials, electronics
National Category
Materials Chemistry
Identifiers
urn:nbn:se:liu:diva-163895 (URN)10.3384/diss.diva-163895 (DOI)9789179299392 (ISBN)
Public defence
2020-03-30, K1, Kåkenhus, Campus Norrköping, Norrköping, 10:15 (English)
Opponent
Supervisors
Funder
Knut and Alice Wallenberg Foundation, WCMM-LiU
Available from: 2020-02-25 Created: 2020-02-25 Last updated: 2020-03-02Bibliographically approved

Open Access in DiVA

fulltext(634 kB)74 downloads
File information
File name FULLTEXT01.pdfFile size 634 kBChecksum SHA-512
af4e7b3984ea4e80e28c710f1c596aaee907e5f653a27871c47ee0abff3c8e9afd2cc5143b8a352443d4526778d69d6ae47355c272085a5cf108cb8c9c64cd12
Type fulltextMimetype application/pdf

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Gryszel, MaciejJakesova, MarieGabrielsson, RogerGlowacki, Eric
By organisation
Physics and ElectronicsFaculty of Science & Engineering
In the same journal
ACS Applied Materials and Interfaces
Materials Chemistry

Search outside of DiVA

GoogleGoogle Scholar
Total: 74 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 332 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf