liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Catalytic Nanotruss Structures Realized by Magnetic Self-Assembly in Pulsed Plasma
Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska fakulteten.
Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska fakulteten.ORCID-id: 0000-0002-6602-7981
Umeå Univ, Sweden.
Visa övriga samt affilieringar
2018 (Engelska)Ingår i: Nano letters (Print), ISSN 1530-6984, E-ISSN 1530-6992, Vol. 18, nr 5, s. 3132-3137Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Tunable nanostructures that feature a high surface area are firmly attached to a conducting substrate and can be fabricated efficiently over significant areas, which are of interest for a wide variety of applications in, for instance, energy storage and catalysis. We present a novel approach to fabricate Fe nanoparticles using a pulsed-plasma process and their subsequent guidance and self-organization into well-defined nanostructures on a substrate of choice by the use of an external magnetic field. A systematic analysis and study of the growth procedure demonstrate that nondesired nanoparticle agglomeration in the plasma phase is hindered by electrostatic repulsion, that a polydisperse nanoparticle distribution is a consequence of the magnetic collection, and that the formation of highly networked nanotruss structures is a direct result of the polydisperse nanoparticle distribution. The nanoparticles in the nanotruss are strongly connected, and their outer surfaces are covered with a 2 nm layer of iron oxide. A 10 mu m thick nanotruss structure was grown on a lightweight, flexible and conducting carbon-paper substrate, which enabled the efficient production of H-2 gas from water splitting at a low overpotential of 210 mV and at a current density of 10 mA/cm(2).

Ort, förlag, år, upplaga, sidor
American Chemical Society (ACS), 2018. Vol. 18, nr 5, s. 3132-3137
Nyckelord [en]
Nanotrusses; nanowires; nanoparticles; iron; electrocatalysis; pulsed sputtering
Nationell ämneskategori
Materialkemi
Identifikatorer
URN: urn:nbn:se:liu:diva-148107DOI: 10.1021/acs.nanolett.8b00718ISI: 000432093200055PubMedID: 29624405OAI: oai:DiVA.org:liu-148107DiVA, id: diva2:1211310
Forskningsfinansiär
Knut och Alice Wallenbergs Stiftelse, KAW 14.0276Tillgänglig från: 2018-05-30 Skapad: 2018-05-30 Senast uppdaterad: 2019-11-11
Ingår i avhandling
1. Plasma Synthesis and Self-Assembly of Magnetic Nanoparticles
Öppna denna publikation i ny flik eller fönster >>Plasma Synthesis and Self-Assembly of Magnetic Nanoparticles
2019 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Nanomaterials are important tools for enabling technological progress as they can provide dramatically different properties as compared to the bulk counterparts. The field of nanoparticles is one of the most investigated within nanomaterials, thanks to the existing, relatively simple, means of manufacturing. In this thesis, high-power pulsed hollow cathode sputtering is used to nucleate and grow magnetic nanoparticles in a plasma. This sputtering technique provides a high degree of ionization of the sputtered material, which has previously been shown to aid in the growth of the nanoparticles. The magnetic properties of the particles are utilized and makes it possible for the grown particles to act as building blocks for self-assembly into more sophisticated nano structures, particularly when an external magnetic field is applied. These structures created are termed “nanowires” or “nanotrusses”, depending on the level of branching and inter-linking that occurs.

Several different elements have been investigated in this thesis. In a novel approach, it is shown how nanoparticles with more advanced structures, and containing material from two hollow cathodes, can be fabricated using high-power pulses. The dual-element particles are achieved by using two distinct and individual elemental cathodes, and a pulse process that allows tuning of individual pulses separately to them. Nanoparticles grown and investigated are Fe, Ni, Pt, Fe-Ni and Ni-Pt. Alternatively, the addition of oxygen to the process allows the formation of oxide or hybrid metal oxide – metal particles. For all nanoparticles containing several elements, it is demonstrated that the stoichiometry can be easily varied, either by the amount of reactive gas let into the process or by tuning the amount of sputtered material through adjusting the electric power supplied to the different cathodes.

One aim of the presented work is to find a suitable material for the use as a catalyst in the production of H2 gas through the process of water splitting. H2 is a good candidate to replace fossil fuels as an energy carrier. However, rare elements (such as Ir or Pt) needs to be used as the catalyst, otherwise a high overpotential is required for the splitting to occur, leading to a low efficiency. This work demonstrates a possible route to avoid this, by using nanomaterials to increase the surface-to-volume ratio, as well as optimizing the elemental ratio between different materials to lower the amount of noble elements required. 

Ort, förlag, år, upplaga, sidor
Linköping: Linköping University Electronic Press, 2019. s. 58
Serie
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 2007
Nyckelord
Plasma, Synthesis, Self-Assembly, Magnetic, Nanoparticles
Nationell ämneskategori
Fusion, plasma och rymdfysik
Identifikatorer
urn:nbn:se:liu:diva-161300 (URN)10.3384/diss.diva-161300 (DOI)9789176850091 (ISBN)
Disputation
2019-12-10, Planck, Fysikhuset, Campus Valla, Linköping, 13:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2019-11-08 Skapad: 2019-10-28 Senast uppdaterad: 2019-11-08Bibliografiskt granskad

Open Access i DiVA

fulltext(37753 kB)207 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 37753 kBChecksumma SHA-512
f637b85429a1f53715d3f6900953611110e55b5ecf10eb13a1842a7c3230b9833aa320ed0c9f439d45928ec654013d6d48d79336f0f55f919add1baa939e3159
Typ fulltextMimetyp application/pdf
Movie of electrocatalysis(617 kB)35 nedladdningar
Filinformation
Filnamn MOVIE01.movFilstorlek 617 kBChecksumma SHA-512
b2b4d082dff2fe02f01fecf2c0dad883e60ed73bc369c21fa3a9ff65d4df4bc1c1ef85f10bf2b9a4aa2074720f791ebf7985fb1bca866a2e8b18d1ab4a8798c4
Typ movieMimetyp video/quicktime

Övriga länkar

Förlagets fulltextPubMed

Personposter BETA

Ekeroth, SebastianMünger, PeterBoyd, RobertBrenning, NilsHelmersson, Ulf

Sök vidare i DiVA

Av författaren/redaktören
Ekeroth, SebastianMünger, PeterBoyd, RobertBrenning, NilsHelmersson, Ulf
Av organisationen
Plasma och beläggningsfysikTekniska fakultetenTeoretisk Fysik
I samma tidskrift
Nano letters (Print)
Materialkemi

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 207 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 346 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf