Open this publication in new window or tab >>2019 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]
In recent decades, the development of computer-controlled manufacturing by adding materiallayer by layer, called Additive Manufacturing (AM), has developed at a rapid pace. The technologyadds possibilities to the manufacturing of geometries that are not possible, or at leastnot economically feasible, to manufacture by more conventional manufacturing methods. AMcomes with the idea that complexity is free, meaning that complex geometries are as expensiveto manufacture as simple geometries. This is partly true, but there remain several design rulesthat needs to be considered before manufacturing. The research field Design for Additive Manufacturing(DfAM) consists of research that aims to take advantage of the possibilities of AMwhile considering the limitations of the technique.
Computer Aided technologies (CAx) is the name of the usage of methods and software thataim to support a digital product development process. CAx includes software and methodsfor design, the evaluation of designs, manufacturing support, and other things. The commongoal with all CAx disciplines is to achieve better products at a lower cost and with a shorterdevelopment time.
The work presented in this thesis bridges DfAM with CAx with the aim of achieving designautomation for AM. The work reviews the current DfAM process and proposes a new integratedDfAM process that considers the functionality and manufacturing of components. Selectedparts of the proposed process are implemented in a case study in order to evaluate theproposed process. In addition, a tool that supports part of the design process is developed.
The proposed design process implements Multidisciplinary Design Optimization (MDO) witha parametric CAD model that is evaluated from functional and manufacturing perspectives. Inthe implementation, a structural component is designed using the MDO framework, which includesComputer Aided Engineering (CAE) models for structural evaluation, the calculation ofweight, and how much support material that needs to be added during manufacturing. Thecomponent is optimized for the reduction of weight and minimization of support material,while the stress levels in the component are constrained. The developed tool uses methodsfor high level Parametric CAD modelling to simplify the creation of parametric CAD modelsbased on Topology Optimization (TO) results.
The work concludes that the implementation of CAx technologies in the DfAM process enablesa more automated design process with less manual design iterations than traditional DfAM processes.It also discusses and presents directions for further research to achieve a fully automateddesign process for Additive Manufacturing.
Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2019. p. 53
Series
Linköping Studies in Science and Technology. Licentiate Thesis, ISSN 0280-7971 ; 1854
National Category
Production Engineering, Human Work Science and Ergonomics
Identifiers
urn:nbn:se:liu:diva-160888 (URN)10.3384/lic.diva-160888 (DOI)9789179299859 (ISBN)
Presentation
2019-10-04, Acas, Linköping, 10:15 (English)
Opponent
Supervisors
Projects
AddMan
Funder
Clean Sky 2, 738002
2019-10-142019-10-142019-10-15Bibliographically approved