liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Approximate Stream Reasoning with Metric Temporal Logic under Uncertainty
Linköpings universitet, Institutionen för datavetenskap, Artificiell intelligens och integrerade datorsystem. Linköpings universitet, Tekniska fakulteten. (KPLAB - Knowledge Processing Lab)ORCID-id: 0000-0001-6356-045X
Linköpings universitet, Institutionen för datavetenskap, Artificiell intelligens och integrerade datorsystem. Linköpings universitet, Tekniska fakulteten.
2019 (engelsk)Inngår i: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence (AAAI), Palo Alto: AAAI Press, 2019Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Stream reasoning can be defined as incremental reasoning over incrementally-available information. The formula progression procedure for Metric Temporal Logic (MTL) makes use of syntactic formula rewritings to incrementally evaluate formulas against incrementally-available states. Progression however assumes complete state information, which can be problematic when not all state information is available or can be observed, such as in qualitative spatial reasoning tasks or in robotics applications. In those cases, there may be uncertainty as to which state out of a set of possible states represents the ‘true’ state. The main contribution of this paper is therefore an extension of the progression procedure that efficiently keeps track of all consistent hypotheses. The resulting procedure is flexible, allowing a trade-off between faster but approximate and slower but precise progression under uncertainty. The proposed approach is empirically evaluated by considering the time and space requirements, as well as the impact of permitting varying degrees of uncertainty.

sted, utgiver, år, opplag, sider
Palo Alto: AAAI Press, 2019.
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-153444OAI: oai:DiVA.org:liu-153444DiVA, id: diva2:1271459
Konferanse
AAAI Conference on Artificial Intelligence (AAAI)
Forskningsfinansiär
CUGS (National Graduate School in Computer Science)Tilgjengelig fra: 2018-12-17 Laget: 2018-12-17 Sist oppdatert: 2019-03-08

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

AAAI Digital Library Conferences

Personposter BETA

de Leng, DanielHeintz, Fredrik

Søk i DiVA

Av forfatter/redaktør
de Leng, DanielHeintz, Fredrik
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 257 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf