liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
On the formation of microstructural gradients in a nickel-base superalloy during electron beam melting
Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
Sandvik Machining Solut AB, Sweden.
Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0002-8304-0221
2018 (English)In: Materials & design, ISSN 0264-1275, E-ISSN 1873-4197, Vol. 160, p. 251-261Article in journal (Refereed) Published
Abstract [en]

Electron beam melting (EBM) is one of the most widely used additive manufacturing (AM) methods for metallic components and has demonstrated great potential to fabricate high-end components in the aerospace and energy industries. The thermal condition within a melt pool and the complicated thermal cycles during the EBM process are of interest but not yet well-understood, and will significantly affect the microstructural homogeneity of as-manufactured nickel-base superalloy components. To establish the thermal profile evolution during electron beam melting of nickel-base superalloys, Inconel 718 (IN718) is manufactured and characterized in the as-manufactured condition, on account of its representative segregation and precipitation behaviours. The microstructure gradient within a build, specifically the Laves phase volume fraction evolution, is rationalized with the solidification condition and the following in-situ annealing. Precipitations of carbide/nitride/carbonitride, delta and gamma/gamma are also discussed. Hardness is measured and correlated to the Laves phase volume fraction evolution and the precipitation of gamma/gamma . The results of this study will (i) shed light on microstructure evolution during the EBM process with regard to thermal history; and (ii) deepen the current understandings of solidification metallurgy for additive manufacturing of Ni-base superalloys. (C) 2018 Elsevier Ltd. All rights reserved.

Place, publisher, year, edition, pages
ELSEVIER SCI LTD , 2018. Vol. 160, p. 251-261
Keywords [en]
Electron beam melting; Inconel 718; Laves; Solidification; In-situ annealing; Thermal history
National Category
Manufacturing, Surface and Joining Technology
Identifiers
URN: urn:nbn:se:liu:diva-153669DOI: 10.1016/j.matdes.2018.09.006ISI: 000453008100023OAI: oai:DiVA.org:liu-153669DiVA, id: diva2:1276242
Note

Funding Agencies|Sandvik Machining Solutions AB in Sandviken, Sweden; Linkoping University [SFO-MAT-LiU#2009-00971]; Chinese Scholarship Council; Agora Materiae; Swedish Governmental Agency for Innovation Systems (Vinnova) [2016-02675]

Available from: 2019-01-07 Created: 2019-01-07 Last updated: 2019-11-07
In thesis
1. On the Microstructures and Anisotropic Mechanical Behaviours of Additively Manufactured IN718
Open this publication in new window or tab >>On the Microstructures and Anisotropic Mechanical Behaviours of Additively Manufactured IN718
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Additive manufacturing (AM), also known as 3D printing, offers great design flexibility for manufacturing components with complex geometries, and has attracted significant interest in the aero and energy industries in the past decades. Among the commercial AM processes, selective laser melting (SLM) and electron beam melting (EBM) are the two most widely used ones for metallic materials. Inconel 718 (IN718) is a nickel-base superalloy and has impressive combination of good mechanical properties, weldability and low cost. Due to its excellent weldability, IN718 has been intensively applied in the AM filed, to gain more understanding of the AM processes and fully realize AM’s potentials.

The study objects in the present thesis include both EBM and SLM IN718. The solidification conditions in EBM and SLM are very different and are different to that of conventional cast, leading to unique microstructures mechanical properties. Therefore, this thesis aims to gain better understanding of the microstructures and anisotropic mechanical behaviours of both EBM and SLM IN718, by detailed characterizations and by comparisons with the forged counterpart.

The as-built microstructure of EBM IN718 is spatially dependent: the periphery (contour) region has a mixture of equiaxed and columnar grains, while the bulk (hatch) region has columnar grains elongated along the building direction; the last solidified region close to the top sample surface shows segregation and Laves phases, otherwise the rest of the whole sample is well homogenized. Differently, the as-built microstructure of SLM IN718 is spatially homogeneous: the grains is rather equiaxed and with subgrain cell structures. These microstructures also respond differently to the standard heat treatment routines for the conventional counterparts.

Anisotropic mechanical properties are evident in the room temperature tensile tests and high temperature dwell-fatigue tests. The anisotropic tensile properties of EBM IN718 at room temperature are more likely due to the directional alignment of porosities along the building direction rather than the strong crysiii tallographic texture of 100 _ building direction. While for SLM IN718, the anisotropy is more likely attributed to the different extents of ‘work-hardening’ or dislocations accumulated between the horizontally and vertically built specimens. The anisotropy mechanisms in dwell-fatigue crack propagations at 550 C for EBM and SLM IN718 are identical: higher effective stress intensity factor when intergranular cracking path is perpendicular to the loading direction, but lower effective stress intensity factor when intergranular cracking path is parallel to or slightly deviated from the loading direction.

The 2160s dwell-fatigue cracking behaviours at 550 C are of significant interest for AM IN718, of which test condition is similar to that of real service for IN718 disk in turbine engine. Generally, after conventional or short-term heat treatments, EBM IN718 shows better dwell-fatigue cracking resistance than SLM IN718. The damage mechanism is different for EBM and SLM IN718: the intergranular cracking in EBM IN718 is due to environmentally assisted grain boundary attack, while creep damage is active for SLM IN718. The considerably ‘deformed’ microstructure, specifically the subgrain cell structures in SLM IN718 resulted from the manufacturing process, is believed to activate creep damage even at a low temperature of 550 C. And for SLM IN718, heat treatment routine must be carefully established to alter the ‘deformed’ microstructure for better time dependent cracking resistance at elevated temperature.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2019. p. 52
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 2019
National Category
Other Materials Engineering
Identifiers
urn:nbn:se:liu:diva-161706 (URN)10.3384/diss.diva-161706 (DOI)9789179299910 (ISBN)
Public defence
2019-12-06, ACSA, Hus A, Campus Valla, Linköping, 10:15 (English)
Opponent
Supervisors
Available from: 2019-11-08 Created: 2019-11-07 Last updated: 2019-11-08Bibliographically approved

Open Access in DiVA

fulltext(65699 kB)78 downloads
File information
File name FULLTEXT01.pdfFile size 65699 kBChecksum SHA-512
0d0bdf5a9d4ca0da4c24d0d751df963555c94333ed23985f8fd68ef37458c3713820d9cf90f545417964760e183ecac2a15b67e506eaadc60535c9cab6e48ca9
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Search in DiVA

By author/editor
Deng, DunyongPeng, RuMoverare, Johan
By organisation
Engineering MaterialsFaculty of Science & Engineering
In the same journal
Materials & design
Manufacturing, Surface and Joining Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 78 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 135 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf