liu.seSearch for publications in DiVA

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt860",{id:"formSmash:upper:j_idt860",widgetVar:"widget_formSmash_upper_j_idt860",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt861_j_idt864",{id:"formSmash:upper:j_idt861:j_idt864",widgetVar:"widget_formSmash_upper_j_idt861_j_idt864",target:"formSmash:upper:j_idt861:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Coherent functors and asymptotic stabilityPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2019 (English)In: Journal of Algebra, ISSN 0021-8693, E-ISSN 1090-266X, Vol. 522Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

ACADEMIC PRESS INC ELSEVIER SCIENCE , 2019. Vol. 522
##### Keywords [en]

Asymptotic prime ideal; Coherent functor; Hilbert polynomial; Betti number; Bass number
##### National Category

Algebra and Logic
##### Identifiers

URN: urn:nbn:se:liu:diva-154529DOI: 10.1016/j.jalgebra.2018.11.035ISI: 000457509500001OAI: oai:DiVA.org:liu-154529DiVA, id: diva2:1290543
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt1166",{id:"formSmash:j_idt1166",widgetVar:"widget_formSmash_j_idt1166",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt1172",{id:"formSmash:j_idt1172",widgetVar:"widget_formSmash_j_idt1172",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt1178",{id:"formSmash:j_idt1178",widgetVar:"widget_formSmash_j_idt1178",multiple:true});
##### Note

##### In thesis

Asymptotic properties of high powers of an ideal related to a coherent functor F are investigated. It is shown that when N is an artinian module the sets of attached prime ideals Att(A) F(0 :(N) a(n)) are the same for n large enough. Also it is shown that for an artinian module N if the modules F(0 :(N) a(n)) have finite length and for a finitely generated module M if the modules F(M/a(n) M) have finite length, their lengths are given by polynomials in n, for large n. When A is local it is shown that, the Betti numbers beta(i)(F(M /a(n) M)) and the Bass numbers mu(i)(F(M / a(n) M)) are given by polynomials in n for large n. (C) 2018 Elsevier Inc. All rights reserved.

Funding Agencies|ISP through EAUMP

Available from: 2019-02-20 Created: 2019-02-20 Last updated: 2019-05-131. Coherent functors and asymptotic properties$(function(){PrimeFaces.cw("OverlayPanel","overlay1315353",{id:"formSmash:j_idt1464:0:j_idt1468",widgetVar:"overlay1315353",target:"formSmash:j_idt1464:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

doi
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1926",{id:"formSmash:j_idt1926",widgetVar:"widget_formSmash_j_idt1926",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1982",{id:"formSmash:lower:j_idt1982",widgetVar:"widget_formSmash_lower_j_idt1982",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1983_j_idt1985",{id:"formSmash:lower:j_idt1983:j_idt1985",widgetVar:"widget_formSmash_lower_j_idt1983_j_idt1985",target:"formSmash:lower:j_idt1983:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});