liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Different composition of leucocytes in cortical and cancellous bone healing in a mouse model
Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Orthopaedics in Linköping.
Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Orthopaedics in Linköping.
Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Orthopaedics in Linköping.
Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Clinical Immunology and Transfusion Medicine.
Show others and affiliations
2018 (English)In: Bone and Joint Research, ISSN 2046-3758, E-ISSN 2352-1872, Vol. 7, no 12, p. 620-628Article in journal (Refereed) Published
Abstract [en]

Objectives Cortical and cancellous bone healing processes appear to be histologically different. They also respond differently to anti-inflammatory agents. We investigated whether the leucocyte composition on days 3 and 5 after cortical and cancellous injuries to bone was different, and compared changes over time using day 3 as the baseline. Methods Ten-week-old male C56/B16J mice were randomized to either cancellous injury in the proximal tibia or cortical injury in the femoral diaphysis. Regenerating tissues were analyzed with flow cytometry at days 3 and 5, using panels with 15 antibodies for common macrophage and lymphocyte markers. The cellular response from day 3 to 5 was compared in order to identify differences in how cancellous and cortical bone healing develop. Results Between day 3 and 5, the granulocytes increased in the cancellous model, whereas the lymphocytes (T cells, B cells, NK cells) and monocytes (CD11b+, 14/80+, CD206+, CD14+ ) increased in the cortical model. Conclusion These results suggest an acute type of inflammation in cancellous bone healing, and a more chronic inflammation in cortical healing. This might explain, in part, why cancellous healing is faster and more resistant to anti-inflammatory drugs than are diaphyseal fractures.

Place, publisher, year, edition, pages
BRITISH EDITORIAL SOC BONE JOINT SURGERY , 2018. Vol. 7, no 12, p. 620-628
Keywords [en]
Metaphyseal; Diaphyseal; Cortical; Cancellous; Intramembranous; Fracture
National Category
Biomaterials Science
Identifiers
URN: urn:nbn:se:liu:diva-154731DOI: 10.1302/2046-3758.712.BJR-2017-0366.R2ISI: 000457234600001PubMedID: 30662708OAI: oai:DiVA.org:liu-154731DiVA, id: diva2:1292106
Note

Funding Agencies|Swedish Research Council [VR 02031-47-5]; European Community [279239]

Available from: 2019-02-27 Created: 2019-02-27 Last updated: 2019-05-02
In thesis
1. Inflammation in Cancellous and Cortical Bone Healing
Open this publication in new window or tab >>Inflammation in Cancellous and Cortical Bone Healing
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Fractures in humans most commonly occur near the joints, in the metaphyseal bone area mainly consisting of cancellous bone. Despite this, mainly cortical fractures, located in the diaphyseal bone area, have been studied in experimental models of bone healing. It is known from previous studies that the diaphyseal fracture is sensitive to anti-inflammatory treatment, while metaphyseal bone healing is more resistant. The aim of this thesis is to study the inflammatory response to bone trauma in cancellous and cortical bone. A flow cytometric method was established for the purpose of examining the cellular composition of the inflammatory process in models of bone healing

In paper I the cellular composition of metaphyseal bone healing was studied with flow cytometry. The proximal tibia was traumatized and then studied at day 1, 3, 5 and 10 afterwards and compared to healthy mice. The contralateral proximal tibia was also studied at the same time points to delineate the trauma site specific inflammation. A few changes could be noted that seemed specific to the trauma site in macrophage phenotype development. However, the cellular composition was similar at the trauma site and in the contralateral proximal tibia. This notion of a general skeletal response was confirmed with analysis of the humerus at day 5.

In paper II a model of cortical bone healing apt for flow cytometry was developed and compared to cancellous bone healing. A furrow was milled along the femoral cortex and the healing bone tissue analyzed. The earliest time point that enough cells were present for flow cytometry was day 3. The cortical and cancellous model of bone healing was compared at day 3 and 5 to study how they evolve in comparison to each other. It was noted that they were similar in cellular composition at day 3, but had diverged at day 5. The cancellous model increased in neutrophilic granulocytes, whereas the cortical model increased in lymphocytes.

In paper III the cancellous and cortical model were compared under experimental intervention of indomethacin. It is known that indomethacin leads to weakened biomechanical properties in cortical bone healing, but not in cancellous bone healing. The effect on cellular composition with indomethacin was studied with flow cytometry and the extracellular protein profile in the healing bone tissue with mass spectrometry. Unexpectedly, inflammatory monocytes were increased in the cortical model at day 3 with indomethacin, but otherwise the models were similar in cell composition at day 3 and 5. In mass spectrometry there was a large increase in detected proteins at day 3 in the indomethacin exposed cortical model, but otherwise the models were similar. This points to an early and model specific effect of indomethacin. The observed lack of indomethacin-induced effects in cancellous bone healing is in line with the previously noted lack of indomethacin-induced effects on bone weakening. The apparently increased inflammatory activity in the cortical model with indomethacin exposure at day 3 might indicate the healing process to be disturbed and not able to progress from the early proinflammatory state to a more anabolic, anti-inflammatory state.

In paper IV the effect of macrophage depletion on healing of metaphyseal bone was studied. Clodronate was given for depletion at different time points prior to surgery and the pull-out force of a screw or tissue phenotyping of macrophages was performed a varying number of days after surgery. It was noted that metaphyseal bone healing was to a large extent inhibited by macrophage depletion up to two days after surgery, but not if depletion was done more than two days after surgery. Thus, macrophages seem to be most important during the first two days after trauma in cancellous bone healing. 

In summary this thesis provide insight to the natural development of bone healing. The findings emphasise that cancellous and cortical bone healing are different entities with differences in the inflammatory process leading to healing.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2019. p. 49
Series
Linköping University Medical Dissertations, ISSN 0345-0082 ; 1668
National Category
Orthopaedics
Identifiers
urn:nbn:se:liu:diva-156251 (URN)10.3384/diss.diva-156251 (DOI)9789176851128 (ISBN)
Public defence
2019-05-09, Belladonna, Campus US, Linköping, 13:00 (English)
Opponent
Supervisors
Note

En felaktig länk till posten förekom i den tryckta avhandlingen. Denna är ändrad i den elektroniska versionen / There was an icorrect link to this record in the printed version of the thesis. This is corrected in the electronic version

Available from: 2019-04-09 Created: 2019-04-09 Last updated: 2019-06-10Bibliographically approved

Open Access in DiVA

fulltext(1083 kB)35 downloads
File information
File name FULLTEXT01.pdfFile size 1083 kBChecksum SHA-512
22ce23786b71d6c00269b100be95d925040865ad84af59cb9174f311455e0bf58210d54ba139ec2e5a867f6c8e1e1a2ba7b914088d289221d47c25a7ec9c5be4
Type fulltextMimetype application/pdf

Other links

Publisher's full textPubMed

Authority records BETA

Tätting, Love

Search in DiVA

By author/editor
Tätting, LoveSandberg, OlofBernhardsson, MagnusErnerudh, JanAspenberg, Per
By organisation
Division of Surgery, Orthopedics and OncologyFaculty of Medicine and Health SciencesDepartment of Orthopaedics in LinköpingDivision of Neuro and Inflammation ScienceDepartment of Clinical Immunology and Transfusion Medicine
In the same journal
Bone and Joint Research
Biomaterials Science

Search outside of DiVA

GoogleGoogle Scholar
Total: 35 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 44 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf