liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Downlink Spectral Efficiency of Cell-Free Massive MIMO with Full-Pilot Zero-Forcing
Ericsson Research, Linköping, 581 12, Sweden.ORCID iD: 0000-0002-6078-835X
Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0002-5954-434X
Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0002-7599-4367
2018 (English)In: 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP), 2018, p. 1003-1007Conference paper, Published paper (Refereed)
Abstract [en]

Cell-free Massive multiple-input multiple-output (MIMO) ensures ubiquitous communication at high spectral efficiency (SE) thanks to increased macro-diversity as compared cellular communications. However, system scalability and performance are limited by fronthauling traffic and interference. Unlike conventional precoding schemes that only suppress intra-cell interference, full-pilot zero-forcing (fpZF), introduced in [1], actively suppresses also inter-cell interference, without sharing channel state information (CSI) among the access points (APs). In this study, we derive a new closed-form expression for the downlink (DL) SE of a cell-free Massive MIMO system with multi-antenna APs and fpZF precoding, under imperfect CSI and pilot contamination. The analysis also includes max-min fairness DL power optimization. Numerical results show that fpZF significantly outperforms maximum ratio transmission scheme, without increasing the fronthauling overhead, as long as the system is sufficiently distributed.

Place, publisher, year, edition, pages
2018. p. 1003-1007
Keywords [en]
MIMO communication, Interference, Precoding, Channel estimation, Fading channels, Downlink, Signal to noise ratio, Cell-free Massive MIMO, full-pilot zero-forcing, downlink spectral efficiency, max-min fairness power control
National Category
Telecommunications
Identifiers
URN: urn:nbn:se:liu:diva-154885DOI: 10.1109/GlobalSIP.2018.8646666ISI: 000462968100205ISBN: 978-1-7281-1295-4 (electronic)ISBN: 978-1-7281-1294-7 (electronic)ISBN: 978-1-7281-1296-1 (print)OAI: oai:DiVA.org:liu-154885DiVA, id: diva2:1293195
Conference
2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Anaheim, CA, USA
Note

Funding agencies: European Union [641985]

Available from: 2019-03-04 Created: 2019-03-04 Last updated: 2019-06-28
In thesis
1. Signal Processing Aspects of Cell-Free Massive MIMO
Open this publication in new window or tab >>Signal Processing Aspects of Cell-Free Massive MIMO
2018 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

The fifth generation of mobile communication systems (5G) promises unprecedented levels of connectivity and quality of service (QoS) to satisfy the incessant growth in the number of mobile smart devices and the huge increase in data demand. One of the primary ways 5G network technology will be accomplished is through network densification, namely increasing the number of antennas per site and deploying smaller and smaller cells.

Massive MIMO, where MIMO stands for multiple-input multiple-output, is widely expected to be a key enabler of 5G. This technology leverages an aggressive spatial multiplexing, from using a large number of transmitting/receiving antennas, to multiply the capacity of a wireless channel. A massive MIMO base station (BS) is equipped with a large number of antennas, much larger than the number of active users. The users are coherently served by all the antennas, in the same time-frequency resources but separated in the spatial domain by receiving very directive signals. By supporting such a highly spatially-focused transmission (precoding), massive MIMO provides higher spectral and energy efficiency, and reduces the inter-cell interference compared to existing mobile systems. The inter-cell interference is however becoming the major bottleneck as we densify the networks. It cannot be removed as long as we rely on a network-centric implementation, since the inter-cell interference concept is inherent to the cellular paradigm.

Cell-free massive MIMO refers to a massive MIMO system where the BS antennas, herein referred to as access points (APs), are geographically spread out. The APs are connected, through a fronthaul network, to a central processing unit (CPU) which is responsible for coordinating the coherent joint transmission. Such a distributed architecture provides additional macro-diversity, and the co-processing at multiple APs entirely suppresses the inter-cell interference. Each user is surrounded by serving APs and experiences no cell boundaries. This user-centric approach, combined with the system scalability that characterizes the massive MIMO design, constitutes a paradigm shift compared to the conventional centralized and distributed wireless communication systems. On the other hand, such a distributed system requires higher capacity of back/front-haul connections, and the signal co-processing increases the signaling overhead.

In this thesis, we focus on some signal processing aspects of cell-free massive MIMO. More specifically, we firstly investigate if the downlink channel estimation, via downlink pilots, brings gains to cell-free massive MIMO or the statistical channel state information (CSI) knowledge at the users is enough to reliably perform data decoding, as in conventional co-located massive MIMO. Allocating downlink pilots is costly resource-wise, thus we also propose resource saving-oriented strategies for downlink pilot assignment. Secondly, we study further fully distributed and scalable precoding schemes in order to outperform cell-free massive MIMO in its canonical form, which consists in single-antenna APs implementing conjugate beamforming (also known as maximum ratio transmission).

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2018. p. 35
Series
Linköping Studies in Science and Technology. Licentiate Thesis, ISSN 0280-7971 ; 1817
National Category
Telecommunications
Identifiers
urn:nbn:se:liu:diva-151026 (URN)10.3384/lic.diva-151026 (DOI)9789176852248 (ISBN)
Presentation
2018-09-21, Systemet, B-huset, Campus Valla, Linköping, 13:15 (English)
Opponent
Supervisors
Available from: 2018-09-17 Created: 2018-09-17 Last updated: 2019-03-20Bibliographically approved

Open Access in DiVA

fulltext(504 kB)56 downloads
File information
File name FULLTEXT01.pdfFile size 504 kBChecksum SHA-512
b524cd77d8b0be2ff065d109b7dc94f0953c9bafeb8f510d85fedee446ae214bd388e6ae63e8c851e52599b3f58983567112649dde2013c4ff8319d790e168d3
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Authority records BETA

Interdonato, GiovanniKarlsson, MarcusBjörnson, EmilLarsson, Erik G.

Search in DiVA

By author/editor
Interdonato, GiovanniKarlsson, MarcusBjörnson, EmilLarsson, Erik G.
By organisation
Communication SystemsFaculty of Science & Engineering
Telecommunications

Search outside of DiVA

GoogleGoogle Scholar
Total: 56 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 117 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf