liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A Data Management and Visualization Tool for Integrating Optimization Results in Product Development
Linköping University, Department of Management and Engineering, Machine Design. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0002-8013-9787
Linköping University, Department of Management and Engineering, Machine Design. Linköping University, Faculty of Science & Engineering.
2018 (English)In: DS 91: Proceedings of NordDesign 2018, Linköping, Sweden, 14th - 17th August 2018: DESIGN IN THE ERA OF DIGITALIZATION / [ed] Ekströmer, Philip; Schütte, Simon and Ölvander, Johan, 2018Conference paper, Published paper (Other academic)
Abstract [en]

This paper presents a data management and visualization tool that was developed in parallel with a Multidisciplinary Design Optimization (MDO) framework in order to enable a more effective use of the obtained results within the Product Development Process (PDP). To this date, the main problem is that the majority of MDO case studies conclude by suggesting a small number of optimal configurations, which do not really hold any meaningful value for the decision makers since they represent only a narrow area of the design space. In this light, the proposed tool aims to provide designers with new possibilities in respect to post-processing of large data sets, and subsequently, to allow the non-technical teams to be engaged and benefit from the use of MDO in the company practices. As an example, an Unmanned Aerial Vehicle (UAV) configurator developed by using the Graphical User Interface (GUI) of MATLAB is herein presented, and it is shown that a tool for handling the results can be the logical next step towards integrating MDO in the manufacturing industry. Overall, this work aims to demonstrate the benefits of the present visualization and management tool as a complementary addition to an existing optimization framework, and also to determine if this approach can be the right strategy towards improving the MDO method for an eventual use in the PDP of complex pro-ducts like UAVs.

Place, publisher, year, edition, pages
2018.
Series
NordDESIGN
Keywords [en]
Big Data, Digital Design
National Category
Aerospace Engineering
Identifiers
URN: urn:nbn:se:liu:diva-155050ISBN: 978-91-7685-185-2 (print)OAI: oai:DiVA.org:liu-155050DiVA, id: diva2:1295413
Conference
NordDesign 2018, Linköping, Sweden, 14th - 17th August 2018
Available from: 2019-03-11 Created: 2019-03-11 Last updated: 2019-11-13Bibliographically approved
In thesis
1. Design Optimization of Unmanned Aerial Vehicles: A System of Systems Approach
Open this publication in new window or tab >>Design Optimization of Unmanned Aerial Vehicles: A System of Systems Approach
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Over the last years, Unmanned Aerial Vehicles (UAVs) have gradually become a more efficient alternative to manned aircraft, and at present, they are being deployed in a broad spectrum of both military as well as civilian missions. This has led to an unprecedented market expansion with new challenges for the aeronautical industry, and as a result, it has created a need to implement the latest design tools in order to achieve faster idea-to-market times and higher product performance.

As a complex engineering product, UAVs are comprised of numerous sub-systems with intricate synergies and hidden dependencies. To this end, Multidisciplinary Design Optimization (MDO) is a method that can identify systems with better performance through the concurrent consideration of several engineering disciplines under a common framework. Nevertheless, there are still many limitations in MDO, and to this date, some of the most critical gaps can be found in the disciplinary modeling, in the analysis capabilities, and in the organizational integration of the method.

As an aeronautical product, UAVs are also expected to work together with other systems and to perform in various operating environments. In this respect, System of Systems (SoS) models enable the exploration of design interactions in various missions, and hence, they allow decision makers to identify capabilities that are beyond those of each individual system. As expected, this significantly more complex formulation raises new challenges regarding the decomposition of the problem, while at the same time, it sets further requirements in terms of analyses and mission simulation.

In this light, this thesis focuses on the design optimization of UAVs by enhancing the current MDO capabilities and by exploring the use of SoS models. Two literature reviews serve as the basis for identifying the gaps and trends in the field, and in turn, five case studies try to address them by proposing a set of expansions. On the whole, the problem is approached from a technical as well as an organizational point of view, and thus, this research aims to propose solutions that can lead to better performance and that are also meaningful to the Product Development Process (PDP).

Having established the above foundation, this work delves firstly into MDO, and more specifically, it presents a framework that has been enhanced with further system models and analysis capabilities, efficient computing solutions, and data visualization tools. At a secondary level, this work addresses the topic of SoS, and in particular, it presents a multi-level decomposition strategy, multi-fidelity disciplinary models, and a mission simulation module. Overall, this thesis presents quantitative data which aim to illustrate the benefits of design optimization on the performance of UAVs, and it concludes with a qualitative assessment of the effects that the proposed methods and tools can have on both the PDP and the organization. 

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2019. p. 81
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 2018
National Category
Production Engineering, Human Work Science and Ergonomics
Identifiers
urn:nbn:se:liu:diva-161915 (URN)10.3384/diss.diva-161915 (DOI)9789175190013 (ISBN)
Public defence
2019-12-06, Hörsal C3, C-huset, Campus Valla, Linköping, 10:15 (English)
Opponent
Supervisors
Funder
Vinnova
Available from: 2019-11-13 Created: 2019-11-13 Last updated: 2019-12-11Bibliographically approved

Open Access in DiVA

fulltext(1172 kB)16 downloads
File information
File name FULLTEXT01.pdfFile size 1172 kBChecksum SHA-512
2e23518a4e775b5abef1c84825bbaac1484b2715102cd6f0bb23a6d3a8b653cc2d49826a6ff4a1d1ce23567f7701d8eb10156e03d871e5d063f800d758b50640
Type fulltextMimetype application/pdf

Authority records BETA

Papageorgiou, AthanasiosÖlvander, Johan

Search in DiVA

By author/editor
Papageorgiou, AthanasiosÖlvander, Johan
By organisation
Machine DesignFaculty of Science & Engineering
Aerospace Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 16 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 57 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf