liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A Tutorial on Auditory Attention Identification Methods
Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten. Oticon AS, Denmark.
Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutet för handikappvetenskap (IHV). Oticon AS, Denmark; Tech Univ Denmark, Denmark.
Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten.
Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten.
2019 (engelsk)Inngår i: Frontiers in Neuroscience, ISSN 1662-4548, E-ISSN 1662-453X, Vol. 13, artikkel-id 153Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Auditory attention identification methods attempt to identify the sound source of a listeners interest by analyzing measurements of electrophysiological data. We present a tutorial on the numerous techniques that have been developed in recent decades, and we present an overview of current trends in multivariate correlation-based and model-based learning frameworks. The focus is on the use of linear relations between electrophysiological and audio data. The way in which these relations are computed differs. For example, canonical correlation analysis (CCA) finds a linear subset of electrophysiological data that best correlates to audio data and a similar subset of audio data that best correlates to electrophysiological data. Model-based (encoding and decoding) approaches focus on either of these two sets. We investigate the similarities and differences between these linear model philosophies. We focus on (1) correlation-based approaches (CCA), (2) encoding/decoding models based on dense estimation, and (3) (adaptive) encoding/decoding models based on sparse estimation. The specific focus is on sparsity-driven adaptive encoding models and comparing the methodology in state-of-the-art models found in the auditory literature. Furthermore, we outline the main signal processing pipeline for how to identify the attended sound source in a cocktail party environment from the raw electrophysiological data with all the necessary steps, complemented with the necessary MATLAB code and the relevant references for each step. Our main aim is to compare the methodology of the available methods, and provide numerical illustrations to some of them to get a feeling for their potential. A thorough performance comparison is outside the scope of this tutorial.

sted, utgiver, år, opplag, sider
FRONTIERS MEDIA SA , 2019. Vol. 13, artikkel-id 153
Emneord [en]
cocktail-party problem; auditory attention; linear models; stimulus reconstruction; canonical correlation anaysis (CCA); decoding; encoding; sparse representation
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-155935DOI: 10.3389/fnins.2019.00153ISI: 000461627500001OAI: oai:DiVA.org:liu-155935DiVA, id: diva2:1301300
Merknad

Funding Agencies|Oticon Foundation; EU H2020-ICT COCOHA (Cognitive Control of a Hearing Aid) grant [644732]; Swedish Research Council (Vetenskapsradet) [VR 2017-06092]

Tilgjengelig fra: 2019-04-01 Laget: 2019-04-01 Sist oppdatert: 2019-10-15

Open Access i DiVA

fulltext(1136 kB)35 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 1136 kBChecksum SHA-512
144795bb26a3ef103b2b1d0597e01faca574cf6345aee47aa5b0ef7ca46ec93d161bb2839c108c83fa8f483adb8bc7eb5af35974cd60b97f48c07f2955d76b10
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekst

Søk i DiVA

Av forfatter/redaktør
Alickovic, EminaLunner, ThomasGustafsson, FredrikLjung, Lennart
Av organisasjonen
I samme tidsskrift
Frontiers in Neuroscience

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 35 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 440 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf