liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Characterization and estimation of turbulence-related wall shear stress in patient-specific pulsatile blood flow
Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanisk värmeteori och strömningslära. Linköpings universitet, Tekniska fakulteten.ORCID-id: 0000-0003-4656-7662
Linköpings universitet, Institutionen för medicin och hälsa, Avdelningen för kardiovaskulär medicin. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Hjärt- och Medicincentrum, Fysiologiska kliniken US. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV.ORCID-id: 0000-0003-1395-8296
Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanisk värmeteori och strömningslära. Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV.ORCID-id: 0000-0001-5526-2399
2019 (Engelska)Ingår i: Journal of Biomechanics, ISSN 0021-9290, E-ISSN 1873-2380, Vol. 85, s. 108-117Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Disturbed, turbulent-like blood flow promotes chaotic wall shear stress (WSS) environments, impairing essential endothelial functions and increasing the susceptibility and progression of vascular diseases. These flow characteristics are today frequently detected at various anatomical, lesion and intervention-related sites, while their role as a pathological determinant is less understood. To present-day, numerous WSS-based descriptors have been proposed to characterize the spatiotemporal nature of the WSS disturbances, however, without differentiation between physiological laminar oscillations and turbulence-related WSS (tWSS) fluctuations. Also, much attention has been focused on magnetic resonance (MR) WSS estimations, so far with limited success; promoting the need of a near-wall surrogate marker. In this study, a new approach is explored to characterize the tWSS, by taking advantage of the tensor characteristics of the fluctuating WSS correlations, providing both a magnitude and an anisotropy measure of the disturbances. These parameters were studied in two patient-specific coarctation models (sever and mild), using large eddy simulations, and correlated against near-wall reciprocal Reynolds stress parameters. Collectively, results showed distinct regions of differing tWSS characteristics, features which were sensitive to changes in flow conditions. Generally, the post-stenotic tWSS was governed by near axisymmetric fluctuations, findings that where not consistent with conventional WSS disturbance predictors. At the 2-3 mm wall-offset range, a strong linear correlation was found between tWSS magnitude and near-wall turbulence kinetic energy (TKE), in contrast to the anisotropy indices, suggesting that MR-measured TKE can be used to assess elevated tWSS regions while tWSS anisotropy estimates request well-resolved simulation methods. (C) 2019 Elsevier Ltd. All rights reserved.

Ort, förlag, år, upplaga, sidor
ELSEVIER SCI LTD , 2019. Vol. 85, s. 108-117
Nyckelord [en]
Computational fluid dynamics; Disturbed hemodynamics; Anisotropy invariant map; Aortic coarctation; Near-wall surrogate markers
Nationell ämneskategori
Strömningsmekanik och akustik
Identifikatorer
URN: urn:nbn:se:liu:diva-156101DOI: 10.1016/j.jbiomech.2019.01.016ISI: 000461725000014PubMedID: 30704762OAI: oai:DiVA.org:liu-156101DiVA, id: diva2:1302136
Tillgänglig från: 2019-04-03 Skapad: 2019-04-03 Senast uppdaterad: 2021-04-26
Ingår i avhandling
1. Turbulence Descriptors in Arterial Flows: Patient-Specific Computational Hemodynamics
Öppna denna publikation i ny flik eller fönster >>Turbulence Descriptors in Arterial Flows: Patient-Specific Computational Hemodynamics
2021 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

At this very moment, there are literally millions of people who suffer from various types of cardiovascular diseases (CVDs), many of whom will experience reduced quality of life or premature lift expectancy. The detailed underlying pathogenic processes behind many of these disorders are not well understood, but were abnormal dynamics of the blood flow (hemodynamics) are believed to play an important role, especially atypical flow-mediated frictional forces on the intraluminal wall (i.e. the wall shear stress, WSS). Under normal physiological conditions, the flow is relatively stable and regular (smooth and laminar), which helps to maintain critical vascular functions. When these flows encounter various unfavorable anatomical obstructions, the flow can become highly unstable and irregular (turbulent), giving rise to abnormal fluctuating hemodynamic forces, which increase the bloodstream pressure losses, can damage the cells within the blood, as well as impair essential structural and functional regulatory mechanisms. Over a prolonged time, these disturbed flow conditions may promote severe pathological responses and are therefore essential to foresee as early as possible.

Clinical measurements of blood flow characteristics are often performed non-invasively by modalities such as ultrasound and magnetic resonance imaging (MRI). High-fidelity MRI techniques may be used to attain a general view of the overall large-scale flow features in the heart and larger vessels but cannot be used for estimating small-scale flow variations nor capture the WSS characteristics. Since the era of modern computers, fluid motion can now also be predicted by computational fluid dynamics (CFD)simulations, which can provide discrete mathematical approximations of the flow field with much higher details (resolution) and accuracy compared to other modalities. CFD simulations rely on the same fundamental principles as weather forecasts, the physical laws of fluid motion, and thus can not only be used to assess the current flow state but also to predict (foresee) important outcome scenarios in e.g. intervention planning. To enable blood flow simulations within certain cardiovascular segments, these CFD models are usually reconstructed from MRI-based anatomical and flow image-data. Today, patient-specific computational hemodynamics are essentially only performed within the research field, where much emphasis is dedicated towards understanding normal/abnormal blood flow physiology, developing better individual-based diagnostics/treatments, and evaluating the results reliability/generality in order to approach clinical applicability.

In this thesis, advanced CFD methods were adopted to simulate realistic patient-specific turbulent hemodynamics in constricted arteries reconstructed from MRI data. The main focus was to investigate novel, comprehensive ways to characterize these abnormal flow conditions, in the pursuit of better clinical decision-making tools; from more in-depth analyzes of various turbulence-related tensor characteristics to descriptors that evaluate the hemodynamics more globally in the domain. Results from the studies in this thesis suggest that these turbulence descriptors can be useful to: i) target cardiovascular sites prone to specific turbulence characteristics, both in the bulk flow and on the intraluminal wall, ii) provide a more extensive view of the general flow severity within malformed vascular regions, and iii) evaluated and potentially improve cardiovascular modeling strategies and MRI-measured turbulence data.

The benefit of these descriptors is that they all, in principle, can be measured by different MRI procedures, making them more accessible from a clinical perspective. Although the significance of these suggested flow-mediated phenotypes has not yet been evaluated clinically, this work opens many doors of opportunities for making more thorough and longitudinal patient-specific studies, including large cohorts of patients with various CVDs susceptible to turbulent-like conditions, as well as performing more in-depth CFD-MRI validation analyzes.

Abstract [sv]

Just nu finns det bokstavligen miljontals människor som lider av olika typer av hjärt- och kärlsjukdomar, av vilka många kommer att uppleva nedsatt livskvalitet samt förkortad livslängd. De underliggande patogena orsakerna bakom dessa åkommor är fortfarande inte väl förstådda, men där onormal blodflödesdynamik (hemodynamik) tros spela en viktig roll, särskilt oregelbundna friktionskrafter på kärlväggens insida (väggskjuvspänningen). Under normala fysiologiska förhållanden är blodflödet relativt stabilt och regelbundet (laminärt), vilket hjälper till att bibehålla kritiska kärlfunktioner. När dessa flöden stöter på olika ogynnsamma anatomiska hinder kan flödet bli mycket instabilt och oregelbundet (turbulent) och ge upphov till onormala fluktuerande flödeskrafter vilket resulterar i förhöjda tryckförluster i blodomloppet, försämring av väsentliga strukturella och funktionella regleringsmekanismer i kärlen, samt stundvis skador på diverse blodkroppar och ge upphov till blodproppar. Över en längre tidsperiod kan dessa abnormala flödesförhållanden främja allvarliga patologiska förändringar och är därför viktiga att kartlägga så tidigt som möjligt.

Kliniska mätningar av blodflödesdynamik utförs ofta icke-invasivt av modaliteter som ultraljud och magnetisk resonanstomografi (MRI). Avancerade MRI-tekniker kan användas för att återskapa en allmän bild av de storskaliga flödesstrukturerna i hjärtat och de större kärlen men är inte lämpad för att uppskatta småskaliga flödesvariationer samt väggskjuvspänningens karaktär i detalj. Sedan introduktionen av moderna datorer så kan numera flödesmönster även estimeras av strömningsimuleringar (beräkningsströmningsdynamik), en metod som på engelska kallas ”computational fluid dynamics” eller CFD, vilket ger en diskret matematisk approximation av flödesfältet med mycket högre spatiell och temporal detaljnivå (upplösning) och noggrannhet jämfört med andra modaliteter. CFD simuleringar vilar på samma grundläggande principer som väderprognoser, de fysiska lagarna som beskriver hur ett strömningsfält beter sig, och kan således inte bara användas för att bedöma det aktuella flödestillståndet utan också för att försöka förutsäga utfallsscenarier vid exempelvis olika kirurgiska interventioner. För att möjliggöra blodflödesimuleringar inom vissa kardiovaskulära segment så rekonstrueras vanligtvis CFD-modeller från MRI-baserade anatomisk- och flödsbilddata. Idag är patientspecifika blodflödesberäkningar i huvudsak en forskningsdiciplin, där mycket vikt läggs vid att förstå normal/onormal blodflödesfysiologi, utveckla bättre individbaserad diagnostik/behandlingar och utvärdera resultatets tillförlitlighet/generalitet för att närma sig klinisk tillämpbarhet.

I denna avhandling användes avancerade CFD simuleringar för att beräkna realistiska turbulenta flödesförhållanden i patientspecifika förträngda bloodkärlsmodeller återskapade från MRI mätningar. Huvudfokus var att undersöka nya, omfattande sätt att karakterisera dessa onormala blodflöden i strävan efter bättre kliniska beslutsverktyg, från mer fördjupade analyser av olika turbulensrelaterade tensoregenskaper till deskriptorer som utvärderar blodflödesdynamiken mer globalt i domänen. Resultat från studierna i denna avhandling antyder att dessa turbulensrelaterade deskriptorer kan vara användbara för att: i) karlägga kardiovaskulära regioner exponerad av olika turbulent karakteristik, både i friströmen samt på kärlväggen, ii) ge en mer omfattande bild av flödes abnormalitet inom missbildade kärlregioner, och iii) utvärdera och potentiellt förbättra kardiovaskulära modelleringsstrategier samt MRI mätningar av turbulens.

Fördelen med dessa flödesdeskriptorer är att de alla, principiellt, kan mätas med olika MRI-tekniker, vilket gör dem mer tillgängliga ur ett kliniskt perspektiv. Ä ven om värdet av dessa föreslagna analysmetoder ännu inte har utvärderats kliniskt, öppnar detta arbete många dörrar för möjligheter att göra mer grundliga och longitudinella patientspecifika studier, inklusive stora kohorter av patienter med olika kardiovaskulär sjukdomar som förorsakar liknande turbulenta flödesförhållanden, samt utför mer fördjupade CFD-MRI valideringsanalyser.

Ort, förlag, år, upplaga, sidor
Linköping: Linköping University Electronic Press, 2021. s. 126
Serie
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 2129
Nationell ämneskategori
Strömningsmekanik och akustik
Identifikatorer
urn:nbn:se:liu:diva-175193 (URN)10.3384/diss.diva-175193 (DOI)9789179296865 (ISBN)
Disputation
2021-05-26, Online through Zoom (contact magnus.andersson@liu.se) and ACAS, A Building, Campus Valla, Linköping, 09:00 (Svenska)
Opponent
Handledare
Forskningsfinansiär
Swedish e‐Science Research CenterVetenskapsrådet, VR 2018-05973
Anmärkning

Additional funding agency: Center for Industrial Information Technology, grant no. CENIIT 09.03

Tillgänglig från: 2021-04-26 Skapad: 2021-04-26 Senast uppdaterad: 2021-05-28Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMed

Sök vidare i DiVA

Av författaren/redaktören
Andersson, MagnusEbbers, TinoKarlsson, Matts
Av organisationen
Mekanisk värmeteori och strömningsläraTekniska fakultetenAvdelningen för kardiovaskulär medicinMedicinska fakultetenFysiologiska kliniken USCentrum för medicinsk bildvetenskap och visualisering, CMIV
I samma tidskrift
Journal of Biomechanics
Strömningsmekanik och akustik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 448 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf