liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Using the wild bootstrap to quantify uncertainty in mean apparent propagator MRI
Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering. Linköping University, Center for Medical Image Science and Visualization (CMIV).
Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Department of Computer and Information Science, The Division of Statistics and Machine Learning. Linköping University, Faculty of Science & Engineering. Linköping University, Center for Medical Image Science and Visualization (CMIV).
Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering. Linköping University, Center for Medical Image Science and Visualization (CMIV).
Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering. Linköping University, Center for Medical Image Science and Visualization (CMIV).ORCID iD: 0000-0002-9091-4724
2019 (English)In: Frontiers in Neuroinformatics, ISSN 1662-5196, E-ISSN 1662-5196, Vol. 13, article id 43Article in journal (Refereed) Published
Abstract [en]

Purpose: Estimation of uncertainty of MAP-MRI metricsis an important topic, for several reasons. Bootstrap deriveduncertainty, such as the standard deviation, providesvaluable information, and can be incorporated in MAP-MRIstudies to provide more extensive insight.

Methods: In this paper, the uncertainty of different MAPMRImetrics was quantified by estimating the empirical distributionsusing the wild bootstrap. We applied the wildbootstrap to both phantom data and human brain data, andobtain empirical distributions for theMAP-MRImetrics returnto-origin probability (RTOP), non-Gaussianity (NG) and propagatoranisotropy (PA).

Results: We demonstrated the impact of diffusion acquisitionscheme (number of shells and number of measurementsper shell) on the uncertainty of MAP-MRI metrics.We demonstrated how the uncertainty of these metrics canbe used to improve group analyses, and to compare differentpreprocessing pipelines. We demonstrated that withuncertainty considered, the results for a group analysis canbe different.

Conclusion: Bootstrap derived uncertain measures provideadditional information to the MAP-MRI derived metrics, andshould be incorporated in ongoing and future MAP-MRIstudies to provide more extensive insight.

Place, publisher, year, edition, pages
Frontiers Media S.A., 2019. Vol. 13, article id 43
Keywords [en]
Bootstrap, diffusion MRI, MAP-MRI, uncertainty, RtoP, NG, PA
National Category
Medical Engineering
Identifiers
URN: urn:nbn:se:liu:diva-157089DOI: 10.3389/fninf.2019.00043ISI: 000471589200001PubMedID: 31244637OAI: oai:DiVA.org:liu-157089DiVA, id: diva2:1318438
Note

Funding agencies:  Swedish Research Council [2015-05356]; Linkoping University Center for Industrial Information Technology (CENIIT); Knut and Alice Wallenberg Foundation project Seeing Organ Function; National Institute of Dental and Craniofacial Research (NIDCR); National

Available from: 2019-05-27 Created: 2019-05-27 Last updated: 2019-07-15

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Authority records BETA

Gu, XuanEklund, AndersÖzarslan, EvrenKnutsson, Hans

Search in DiVA

By author/editor
Gu, XuanEklund, AndersÖzarslan, EvrenKnutsson, Hans
By organisation
Division of Biomedical EngineeringFaculty of Science & EngineeringCenter for Medical Image Science and Visualization (CMIV)The Division of Statistics and Machine Learning
In the same journal
Frontiers in Neuroinformatics
Medical Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 41 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf