liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Identification of Flying Drones in Mobile Networks using Machine Learning
Linköpings universitet, Institutionen för systemteknik, Kommunikationssystem.
2019 (Engelska)Självständigt arbete på avancerad nivå (masterexamen), 20 poäng / 30 hpStudentuppsats (Examensarbete)Alternativ titel
Identifiering av flygande drönare i mobila nätverk med hjälp av maskininlärning (Svenska)
Abstract [en]

Drone usage is increasing, both in recreational use and in the industry. With it comes a number of problems to tackle. Primarily, there are certain areas in which flying drones pose a security threat, e.g., around airports or other no-fly zones. Other problems can appear when there are drones in mobile networks which can cause interference. Such interference comes from the fact that radio transmissions emitted from drones can travel more freely than those from regular UEs (User Equipment) on the ground since there are few obstructions in the air. Additionally, the data traffic sent from drones is often high volume in the form of video streams. The goal of this thesis is to identify so-called "rogue drones" connected to an LTE network. Rogue drones are flying drones that appear to be regular UEs in the network. Drone identification is a binary classification problem where UEs in a network are classified as either a drone or a regular UE and this thesis proposes machine learning methods that can be used to solve it. Classifications are based on radio measurements and statistics reported by UEs in the network. The data for the work in this thesis is gathered through simulations of a heterogenous LTE network in an urban scenario. The primary idea of this thesis is to use a type of cascading classifier, meaning that classifications are made in a series of stages with increasingly complex models where only a subset of examples are passed forward to subsequent stages. The motivation for such a structure is to minimize the computational requirements at the entity making the classifications while still being complex enough to achieve high accuracy. The models explored in this thesis are two-stage cascading classifiers using decision trees and ensemble learning techniques. It is found that close to 60% of the UEs in the dataset can be classified without errors in the first of the two stages. The rest is forwarded to a more complex model which requires more data from the UEs and can achieve up to 98% accuracy. 

Ort, förlag, år, upplaga, sidor
2019. , s. 41
Nyckelord [en]
Drones, Machine Learning, LTE, Mobile networks, Radio, Decision tree, Ensemble learning
Nationell ämneskategori
Kommunikationssystem
Identifikatorer
URN: urn:nbn:se:liu:diva-157627ISRN: LiTH-ISY-EX--19/5222--SEOAI: oai:DiVA.org:liu-157627DiVA, id: diva2:1326033
Externt samarbete
Ericsson AB
Ämne / kurs
Informationsteknologi
Presentation
2019-06-13, Algoritmen, Linköpings universitet, Linköping, 13:15 (Engelska)
Handledare
Examinatorer
Tillgänglig från: 2019-06-18 Skapad: 2019-06-17 Senast uppdaterad: 2019-06-18Bibliografiskt granskad

Open Access i DiVA

Alesand - Identification of Flying Drones in Mobile Networks using Machine Learning(1048 kB)100 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1048 kBChecksumma SHA-512
c5d5656d6935ef273b76e2e9f7c9072d95284b7379352aaa7228f87459ac45c462fd3936c9417861ec4b8a43cff47165c6d780804aa49dce539d4c674bf66921
Typ fulltextMimetyp application/pdf

Sök vidare i DiVA

Av författaren/redaktören
Alesand, Elias
Av organisationen
Kommunikationssystem
Kommunikationssystem

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 100 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 299 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf