liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Explaining the Exceptional Wet Integrity of Transparent Cellulose Nanofibril Films in the Presence of Multivalent Ions: Suitable Substrates for Biointerfaces
Department of Fiber Technology, KTH, Stockholm, Sweden.
Department of Fiber Technology, KTH, Stockholm, Sweden.
Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik och hållfasthetslära. Linköpings universitet, Tekniska fakulteten.ORCID-id: 0000-0002-1503-8293
Department of Fiber Technology, KTH, Stockholm, Sweden.
2019 (engelsk)Inngår i: Advanced Materials Interfaces, ISSN 2196-7350, Vol. 13, nr 6, artikkel-id 1900333Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Cellulose nanofibrils (CNFs) assemble into water‐resilient materials in the presence of multivalent counter‐ions. The essential mechanisms behind these assemblies are ion–ion correlation and specific ion effects. A network model shows that the interfibril attraction indirectly influences the wet modulus by a fourth power relationship to the solidity of the network (Ew ∝ φ4). Ions that induce both ion–ion correlation and specific ion effects significantly reduce the swelling of the films, and due to the nonlinear relationship dramatically increase the wet modulus. Herein, this network model is used to explain the elastoplastic behavior of wet films of 2,2,6,6‐tetramethylpiperidine‐1‐oxyl radical (TEMPO)‐oxidized, carboxymethylated, and phosphorylated CNFs in the presence of different counter‐ions. The main findings are that the aspect ratio of the CNFs influences the ductility of the assemblies, that the bivalency of phosphorylate ligands probably limits the formation of interfibril complexes with divalent ions, and that a higher charge density increases the friction between fibrils by increasing the short‐range attraction from ion–ion correlation and specific ion effects. These findings can be used to rationally design CNF materials for a variety of applications where wet strength, ductility, and transparency are important, such as biomaterials or substrates for bioelectronics.

sted, utgiver, år, opplag, sider
Wiley-VCH Verlagsgesellschaft, 2019. Vol. 13, nr 6, artikkel-id 1900333
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-158508DOI: 10.1002/admi.201900333ISI: 000478635700019Scopus ID: 2-s2.0-85065451547OAI: oai:DiVA.org:liu-158508DiVA, id: diva2:1334315
Forskningsfinansiär
Knut and Alice Wallenberg Foundation
Merknad

Funding agencies: Knut and Alice Wallenberg Foundation; Wallenberg Wood Science Center (WWSC)

Tilgjengelig fra: 2019-07-02 Laget: 2019-07-02 Sist oppdatert: 2019-08-19bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Lindström, Stefan B

Søk i DiVA

Av forfatter/redaktør
Lindström, Stefan B
Av organisasjonen
I samme tidsskrift
Advanced Materials Interfaces

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 93 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf