liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Dynamics of 3D-island growth on weakly-interacting substrates
Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanodesign. Linköpings universitet, Tekniska fakulteten.ORCID-id: 0000-0003-2759-4147
Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanodesign. Linköpings universitet, Tekniska fakulteten.ORCID-id: 0000-0002-2541-2867
Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanodesign. Linköpings universitet, Tekniska fakulteten.
Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten. Univ Illinois, IL 61801 USA.
Visa övriga samt affilieringar
2019 (Engelska)Ingår i: Applied Surface Science, ISSN 0169-4332, E-ISSN 1873-5584, Vol. 488, s. 383-390Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The growth dynamics of faceted three-dimensional (3D) Ag islands on weakly-interacting substrates are investigated-using kinetic Monte Carlo (kMC) simulations and analytical modelling-with the objective of determining the critical top-layer radius R-c required to nucleate a new island layer as a function of temperature T, at a constant deposition rate. kMC shows that R-c decreases from 17.3 to 6.0 angstrom as T is increased at 25 K intervals, from 300 to 500 K. That is, a higher T promotes top-layer nucleation resulting in an increase in island height-to-radius aspect ratios. This explains experimental observations for film growth on weakly-interacting substrates, which are not consistent with classical homoepitaxial growth theory. In the latter case, higher temperatures yield lower top-layer nucleation rates and lead to a decrease in island aspect ratios. The kMC simulation results are corroborated by an analytical mean field model, in which R-c is estimated by calculating the steady-state adatom density on the island side facets and top layer as a function of T. The overall findings of this study constitute a first step toward developing rigorous theoretical models, which can be used to guide synthesis of metal nanostructures, and layers with controlled shape and morphology, on technologically important substrates, including two-dimensional crystals, for nanoelectronic and catalytic applications.

Ort, förlag, år, upplaga, sidor
ELSEVIER SCIENCE BV , 2019. Vol. 488, s. 383-390
Nyckelord [en]
Growth; Kinetic Monte Carlo; Nanostructure; Diffusion; Nucleation
Nationell ämneskategori
Den kondenserade materiens fysik
Identifikatorer
URN: urn:nbn:se:liu:diva-158910DOI: 10.1016/j.apsusc.2019.05.208ISI: 000472476200042OAI: oai:DiVA.org:liu-158910DiVA, id: diva2:1338213
Anmärkning

Funding Agencies|Linkoping University ("LiU Career Contract") [Dnr-LiU-2015-01510]; Swedish Research Council [VR-2015-04630, VR2014-5790]; Knut and Alice Wallenberg Foundation [KAW 2011-0094]

Tillgänglig från: 2019-07-20 Skapad: 2019-07-20 Senast uppdaterad: 2021-05-22
Ingår i avhandling
1. Metal film growth on weakly-interacting substrates: Stochastic simulations and analytical modelling
Öppna denna publikation i ny flik eller fönster >>Metal film growth on weakly-interacting substrates: Stochastic simulations and analytical modelling
2019 (Engelska)Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Thin films are nanoscale layers of material, with exotic properties useful in diverse areas, ranging from biomedicine to nanoelectronics and surface protection. Film properties are not only determined by their chemical composition, but also by their microstructure and roughness, features that depend crucially on the growth process due to the inherent out-of equilibrium nature of the film deposition techniques. This fact suggest that it is possible to control film growth, and in turn film properties, in a knowledge-based manner by tuning the deposition conditions. This requires a good understanding of the elementary film-forming processes, and the way by which they are affected by atomic-scale kinetics. The kinetic Monte Carlo (kMC) method is a simulation tool that can model film evolution over extended time scales, of the order of microseconds, and beyond, and thus constitutes a powerful complement to experimental research aiming to obtain an universal understanding of thin film formation and morphological evolution.

In this work, kMC simulations, coupled with analytical modelling, are used to investigate the early stages of formation of metal films and nanostructures supported on weakly-interacting substrates. This starts with the formation and growth of faceted 3D islands, that relies first on facile adatom ascent at single-layer island steps and subsequently on facile adatom upward diffusion from the base to the top of the island across its facets. Interlayer mass transport is limited by the rate at which adatoms cross from the sidewall facets to the island top, a process that determines the final height of the islands and leads non-trivial growth dynamics, as increasing temperatures favour 3D growth as a result of the upward transport. These findings explain the high roughness observed experimentally in metallic films grown on weakly-interacting substrates at high temperatures.

The second part of the study focus on the next logical step of film formation, when 3D islands come into contact and fuse into a single one, or coalesce. The research reveals that the faceted island structure governs the macroscopic process of coalescence as well as its dynamics, and that morphological changes depend on 2D nucleation on the II facets. In addition, deposition during coalescence is found to accelerate the process and modify its dynamics, by contributing to the nucleation of new facets.

This study provides useful knowledge concerning metal growth on weakly-interacting substrates, and, in particular, identifies the key atomistic processes controlling the early stages of formation of thin films, which can be used to tailor deposition conditions in order to achieve films with unique properties and applications.

Ort, förlag, år, upplaga, sidor
Linköping: Linköping University Electronic Press, 2019. s. 46
Serie
Linköping Studies in Science and Technology. Licentiate Thesis, ISSN 0280-7971 ; 1830
Nationell ämneskategori
Nanoteknik
Identifikatorer
urn:nbn:se:liu:diva-154428 (URN)10.3384/lic.diva-154428 (DOI)9789176851449 (ISBN)
Presentation
2019-02-15, Schrödinger, E324, Fysikhuset, Campus Valla, Linköping, 13:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2019-02-11 Skapad: 2019-02-11 Senast uppdaterad: 2020-11-16Bibliografiskt granskad
2. Metal film growth on weakly-interacting substrates: Multiscale modeling
Öppna denna publikation i ny flik eller fönster >>Metal film growth on weakly-interacting substrates: Multiscale modeling
2020 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Thin films are nanoscale layers of material used to functionalize surfaces or to serve as building blocks in more complex devices. In recent years, thin metal films have become vital for modern devices within, e.g., biosensing, catalysis, and nanoelectronics, whereby synthesis of metal layers with specific morphological features on two-dimensional (2D) crystals and oxides is required. However, this entails a great scientific challenge: in most of the afore-mentioned film/substrate combinations substrate and metal atoms interact weakly, causing the latter to self-assemble without control into three-dimensional (3D) clusters.

Nowadays, a significant fraction of thin films is synthesized via condensation from the vapor phase, a far-from-equilibrium process in which film morphology is governed by the kinetic rates of atomic-scale structure-forming processes. It is, therefore, evident that knowledge-based synthesis of metal layers in high-performance devices necessitates a comprehensive understanding of the dynamic competition among these processes at the nano- and mesoscale. Such understanding is today incomplete, since experimental materials science tools are often not capable of providing nanometer and sub-nanometer insights at time scales that are relevant for thin-film synthesis. Computational approaches offer the possibility to fill the afore-mentioned gap in knowledge by allowing to explore atomistic behaviors with picosecond resolution. Hence, in the present thesis, a combination of modern computer simulation techniques is used to investigate thin metal film growth on weakly-interacting substrates from a purely atomistic point of view and to elucidate the ways by which atomic diffusion mechanisms give rise to the final film morphologies.

In the first part of the thesis, an in-house kinetic Monte Carlo (KMC) simulation code and analytical modelling are used to investigate the early growth stages of Ag films supported on a generic weakly-interacting substrate. The results show that the weak interaction strength between film atoms and substrates leads to the formation of strongly-faceted 3D Ag islands, whose vertical growth is mediated by the temperature-dependent upward adatom diffusion across the facets. Eventually, the 3D islands impinge on each other and coalesce via surface migration of facet layers. Migration can be promoted by an increase of the deposition flux, but it can also be hindered by material agglomeration if the flux exceeds a critical threshold. These findings provide the foundation for explaining several effects observed during thin film growth on weakly-interacting substrates, including the increase of film roughness with temperature, the transition from 3D to 2D film morphology upon suppression of coalescence, and the origin of changes in thin film roughness and grain boundary number densities when varying the magnitude of vapor flux arrival rate.

In the second part, ab initio and classical Molecular Dynamics simulations are used to investigate the diffusion dynamics of several transition metal adatoms (Ag, Au, Cu, Pd, Pt and Ru) and multi-atomic clusters (Ag, Au, Cu and Pd) on single layer graphene at room temperature (300K). The simulated diffusion trajectories reveal that diffusing adspecies experiencing a deep (hundreds of meV) potential energy landscape (PEL) on the substrate surface follow random walks; whilst those with a weak interaction with the substrate (PEL depth of a few meV) follow a superdiffusive motion pattern known as Lévy walk. This type of anomalous movement— also observed in other phenomena in physical, biological, and social systems—manifests itself as a continuous atomic motion with occasional flights over distances covering multiple adsorption sites. The fact that adspecies follow a distinctly different type of motion than what is observed in classical homoepitaxial growth theory implies that energy barriers readily available from static (0K) calculations may not be able to provide a physical accurate description of surface diffusion of metal adspecies on 2D crystals. As such, anomalous diffusion is a potentially important aspect to be considered when modelling growth of metal films and nanostructures on 2D materials.

The results and insights generated in the present thesis provide key knowledge for controlled synthesis of films and nanostructures with tailored properties. This, in turn, is relevant for developing high-performance energy-saving windows, improving the turnover frequency of catalytic reactions, and integrating 2D materials into novel nanoelectronic devices. Moreover, the techniques developed and employed herein contribute toward bringing modern computational tools closer to the field of thin film growth.

Ort, förlag, år, upplaga, sidor
Linköping University Electronic Press, 2020. s. 88
Serie
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 2092
Nationell ämneskategori
Annan materialteknik Fysikalisk kemi Annan fysik
Identifikatorer
urn:nbn:se:liu:diva-171435 (URN)10.3384/diss.diva-171435 (DOI)9789179298050 (ISBN)
Disputation
2020-12-11, Online through Teams (contact wendela.yonar@liu.se) and Planck, F Building, Campus Valla, Linköping, 15:00 (Engelska)
Opponent
Handledare
Forskningsfinansiär
Linköpings universitet, Dnr-LiU-2015-01510, 2015-2020Vetenskapsrådet, VR-2015-046-30ÅForsk (Ångpanneföreningens Forskningsstiftelse), ÅF 19-137Stiftelsen Olle Engkvist Byggmästare, SOEB 190-312National Supercomputer Centre (NSC), Sweden
Tillgänglig från: 2020-11-19 Skapad: 2020-11-17 Senast uppdaterad: 2020-11-19Bibliografiskt granskad

Open Access i DiVA

fulltext(2199 kB)357 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 2199 kBChecksumma SHA-512
0c6c7a03680d6619e449b672b0ec8851c90b09f45e0f99059e4ce65c9b212adcc88318ad7b6a40e3576cdb7928ab7624051667549744bbfb2cae6dd839bc0dc4
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltext

Sök vidare i DiVA

Av författaren/redaktören
Gervilla Palomar, VictorAlmyras, GeorgiosThunstrom, F.Greene, Joseph ESarakinos, Kostas
Av organisationen
NanodesignTekniska fakultetenTunnfilmsfysik
I samma tidskrift
Applied Surface Science
Den kondenserade materiens fysik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 357 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 179 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf