liu.seSearch for publications in DiVA
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Atom Probe Tomography of Hard Nitride and Boride Thin Films
Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Hard ceramic thin films, including TiSiN, ZrAlN, ZrB2, and ZrTaB2, with applications for wear-resistant coatings, have been studied using atom probe tomography and correlated with several other analytical techniques, including X-ray diffraction, electron microscopy, and elastic recoil detection analysis. Outstanding obstacles for quantitative atom probe tomography of ceramic thin films have been surmounted.

Mass spectral overlaps in TiSiN, which make 28Si indistinguishable from 14N, was resolved by isotopic substitution with 15N, and the nanostructural distribution of elements was thus revealed in 3-D, which enabled the identification of additional structural elements within the nanostructured Ti0.81Si0.1915N film. Improvements to the growth model of TiSiN by cathodic arc deposition was suggested.

A self-organized nanolabyrinthine structure of ZrAlN, consisting of standing lamellae of fcc-ZrN and hexagonal AlN, was investigated with focus on the onset and limits of the self-organization. The local crystallographic orientational relationships were (001)ZrN || (0001)AlN and <110>ZrN || <2-1-10>AlN. Close to the MgO substrates, a smooth transition region was formed, going from segregated and disordered to the self-organized nanolabyrinthine structure. With increased growth temperature, coarse (111)-oriented ZrN grains occasionally precipitated and locally replaced the nanolabyrinthine structure. Significant local magnification effects rendered the Zr and N signals unusable, thereby inhibiting quantitative compositional analysis of the constituent phases, but the nanostructure was resolved using the Al signal.

Ceramic materials are often affected by correlated evaporation, which can result in losses due to the detector dead-time/space. A compositional correction procedure was suggested, tested against an established procedure, and applied to ZrB2. The correction was found to be less dependent on the isotope abundances and background correction compared to the established procedure. While losses due to dead-time/space occur in atom probe tomography of all materials, the correlative field evaporation behavior of ceramics significantly increases the compositional error. The evaporation behavior of ZrB2 was therefore thoroughly investigated and evidence of preferential retention, correlated evaporation, and inhomogeneous field distributions at a low-index pole was presented. The high mass resolution, relatively low multiple events percentage, and quality of the co-evaporation correlation data was partly attributed to the crystal structure and film orientation, which promoted a layer-by-layer field evaporation.

The evaporation behavior of the related ZrTaB2 films was found to be similar to that of ZrB2. The distribution of Ta in relation to Zr was investigated, showing that the column boundaries were both metal- and Ta-rich, and that there was a significant amount of Ta in solid solution within the columns.

In addition, an instrumental artefact previously not described in atom probe tomography was found in several of the materials investigated in this thesis. The artefact consists of high-density lines along the analysis direction, which cannot be related to pole artefacts. The detection system of the atom probe was identified as the cause, because the artefact patterns on detector histograms coincided with the structure of the microchannel plate. Inconsistencies in the internal boundaries of the microchannel plate multifibers from the manufacturing process can influence the signal to the detector and locally increase the detection efficiency in a pattern characteristic to the microchannel plate in question.

Altogether, this thesis shows that atom probe tomography of nitride and boride thin films is burdened by several artefacts and distortions, but that relevant material outcomes can nevertheless be achieved by informed choices of film isotopic constituents and analytical parameters, exclusion of heavily distorted regions (such as pole artefacts), and the use of compositional correction procedures when applicable.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2019. , p. 79
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1995
Keywords [en]
Materials science, Atom probe tomography (APT), Ceramics, Nitrides, Borides
National Category
Physical Sciences Materials Engineering Ceramics
Identifiers
URN: urn:nbn:se:liu:diva-159187DOI: 10.3384/diss.diva-159187ISBN: 9789176850435 (print)OAI: oai:DiVA.org:liu-159187DiVA, id: diva2:1339959
Public defence
2019-09-13, Planck, Fysikhuset, Campus Valla, Linköping, 10:15 (English)
Opponent
Supervisors
Available from: 2019-08-02 Created: 2019-08-01 Last updated: 2019-09-20Bibliographically approved
List of papers
1. Resolving Mass Spectral Overlaps in Atom Probe Tomography by Isotopic Substitutions: Case of TiSi15N
Open this publication in new window or tab >>Resolving Mass Spectral Overlaps in Atom Probe Tomography by Isotopic Substitutions: Case of TiSi15N
Show others...
2018 (English)In: Ultramicroscopy, ISSN 0304-3991, E-ISSN 1879-2723, Vol. 184, p. 51-60Article in journal (Refereed) Published
Abstract [en]

Mass spectral overlaps in atom probe tomography (APT) analyses of complex compounds typically limit the identification of elements and microstructural analysis of a material. This study concerns the TiSiN system, chosen because of severe mass-to-charge-state ratio overlaps of the 14N+ and 28Si2+ peaks as well as the 14N and 28Si2+ peaks. By substituting 14N with 15N, mass spectrum peaks generated by ions composed of one or more N atoms will be shifted toward higher mass-to-charge-state ratios, thereby enabling the separation of N from the predominant Si isotope. We thus resolve thermodynamically driven Si segregation on the nanometer scale in cubic phase Ti1-xSix15N thin films for Si contents 0.08 ≤ x ≤ 0.19 by APT, as corroborated by transmission electron microscopy. The APT analysis yields a composition determination that is in good agreement with energy dispersive X-ray spectroscopy and elastic recoil detection analyses. Additionally, a method for determining good voxel sizes for visualizing small-scale fluctuations is presented and demonstrated for the TiSiN system.

Place, publisher, year, edition, pages
Elsevier, 2018
National Category
Physical Sciences
Identifiers
urn:nbn:se:liu:diva-122721 (URN)10.1016/j.ultramic.2017.08.004 (DOI)000415650200007 ()28850866 (PubMedID)
Note

Funding Agencies:VINN Excellence Center on Functional Nanoscale Materials (FunMat) [2007-00863]; Swedish Research Council (VR) project [2013-4018]; Swedish Government Strategic Research Area Grant in Materials Science (Grant SFO Mat-LiU) on Advanced Functional Materials [2009-00971]; Knut and Alice Wallenberg Project Isotope

Available from: 2015-11-18 Created: 2015-11-18 Last updated: 2019-08-01Bibliographically approved
2. Self-organized Nanostructuring in Zr0.64Al0.36N Thin Films Studied by Atom Probe Tomography
Open this publication in new window or tab >>Self-organized Nanostructuring in Zr0.64Al0.36N Thin Films Studied by Atom Probe Tomography
Show others...
2016 (English)In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, p. 233-238Article in journal (Refereed) Published
Abstract [en]

We have applied atom probe tomography (apt) to analyze the selforganized structure of wear-resistant Zr0.64Al0.36N thin films grown by magnetron sputtering. Transmission electron microscopy shows that these films grow as a two-dimensional nanocomposite, consisting of interleaved lamellae in a labyrinthine structure, with a size scale of ∼ 5 nm. The structure was recovered in the Al apt signal, while the Zr and N data lacked structural information due to severe local magnification effects. The onset of the self-organized growth was observed to occur locally by nucleation, at 5-8 nm from the MgO substrate, after increasing Zr-Al compositional fluctuations. Finally, it was observed that the self-organized growth mode could be perturbed by renucleation of ZrN.

Place, publisher, year, edition, pages
Elsevier, 2016
National Category
Natural Sciences
Identifiers
urn:nbn:se:liu:diva-84258 (URN)10.1016/j.tsf.2016.07.034 (DOI)000381939700037 ()
Note

Funding agencies: VINN Excellence Center on Functional Nanoscale Materials; Swedish Research Council; Swedish Government Strategic Faculty Grant in Materials Science (SFO Mat-LiU) at Linkoping University; Swedish Governmental Agency for Innovation Systems (Vinnova) [2011-0

Vid tiden för disputationen förelåg publikationen som manuskript

Available from: 2012-10-03 Created: 2012-10-03 Last updated: 2019-08-02Bibliographically approved
3. Strategy for simultaneously increasing both hardness and toughness in ZrB2-rich Zr1-xTaxBy thin films
Open this publication in new window or tab >>Strategy for simultaneously increasing both hardness and toughness in ZrB2-rich Zr1-xTaxBy thin films
Show others...
2019 (English)In: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films, ISSN 0734-2101, E-ISSN 1520-8559, Vol. 37, no 3, article id 031506Article in journal (Refereed) Published
Abstract [en]

Refractory transition-metal diborides exhibit inherent hardness. However, this is not always sufficient to prevent failure in applications involving high mechanical and thermal stress, since hardness is typically accompanied by brittleness leading to crack formation and propagation. Toughness, the combination of hardness and ductility, is required to avoid brittle fracture. Here, the authors demonstrate a strategy for simultaneously enhancing both hardness and ductility of ZrB2-rich thin films grown in pure Ar on Al2O3(0001) and Si(001) substrates at 475 degrees C. ZrB2.4 layers are deposited by dc magnetron sputtering (DCMS) from a ZrB2 target, while Zr1-xTaxBy alloy films are grown, thus varying the B/metal ratio as a function of x, by adding pulsed high-power impulse magnetron sputtering (HiPIMS) from a Ta target to deposit Zr1-xTaxBy alloy films using hybrid Ta-HiPIMS/ZrB2-DCMS sputtering with a substrate bias synchronized to the metal-rich portion of each HiPIMS pulse. The average power P-Ta (and pulse frequency) applied to the HiPIMS Ta target is varied from 0 to 1800W (0 to 300 Hz) in increments of 600W (100 Hz). The resulting boron-to-metal ratio, y = B/(Zr+Ta), in as-deposited Zr1-xTaxBy films decreases from 2.4 to 1.5 as P-Ta is increased from 0 to 1800W, while x increases from 0 to 0.3. A combination of x-ray diffraction (XRD), glancing-angle XRD, transmission electron microscopy (TEM), analytical Z-contrast scanning TEM, electron energy-loss spectroscopy, energy-dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy, and atom-probe tomography reveals that all films have the hexagonal AlB2 crystal structure with a columnar nanostructure, in which the column boundaries of layers with 0 amp;lt;= x amp;lt; 0.2 are B-rich, whereas those with x amp;gt;= 0.2 are Ta-rich. The nanostructural transition, combined with changes in average column widths, results in an similar to 20% increase in hardness, from 35 to 42 GPa, with a simultaneous increase of similar to 30% in nanoindentation toughness, from 4.0 to 5.2MPa root m. Published by the AVS.

Place, publisher, year, edition, pages
A V S AMER INST PHYSICS, 2019
National Category
Inorganic Chemistry
Identifiers
urn:nbn:se:liu:diva-159001 (URN)10.1116/1.5093170 (DOI)000472182400035 ()
Note

Funding Agencies|Swedish Research Council VR [2014-5790, 2018-03957, 642-2013-8020]; Knut and Alice Wallenbergs foundation [KAW 2015.0043]; VINNOVA [2018-04290]; Aforsk Foundation [16-359]; Carl Tryggers Stiftelse [CTS 15: 219, CTS 17: 166, CTS 14: 431]; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University (Faculty Grant SFO Mat LiU) [2009 00971]

Available from: 2019-07-19 Created: 2019-07-19 Last updated: 2019-08-01
4. Atom probe tomography field evaporation characteristics and compositional corrections of ZrB2
Open this publication in new window or tab >>Atom probe tomography field evaporation characteristics and compositional corrections of ZrB2
Show others...
2019 (English)In: Materials Characterization, ISSN 1044-5803, E-ISSN 1873-4189, Vol. 156, article id 109871Article in journal (Refereed) Published
Abstract [en]

The microstructure of stoichiometric ZrB2.0 and B over-stoichiometric ZrB2.5 thin films has been studied using atom probe tomography (APT), X-ray diffraction, and transmission electron microscopy. Both films consist of columnar ZrB2 grains with AlB2-type crystal structure. The narrow stoichiometry range of ZrB2 results in the presence of separate disordered B-rich boundaries even in ZrB2.0. At higher average B content, specifically ZrB2.5, the formation of a continuous network around the sides of the ZrB2 columns is promoted. In addition, the APT field evaporation characteristics of ZrB2 and its influence on the measured local composition has been studied and compared to the average composition from elastic recoil detection analysis (ERDA). Differences in the measured average compositions of the two techniques are explained by the APT detector dead-time/space. A new pile-up pairs correction procedure based on co-evaporation correlation data was thus employed here for the APT data and compared with the 10B-method (the B equivalence of the 13C-method), as well as the combination of both methods. In ZrB2.0, all of the applied compositional correction methods were found to reduce the compositional difference when appropriate isotopic abundances were used. In ZrB2.5, the inhomogeneity of the film likely increased the local APT composition to such an extent that even conservative correction procedures overestimated the B content compared to the ERDA reference. The strengths of the pile-up pairs correction compared the 10B and the combined methods are higher precision, due to it being less dependent on the accuracy of estimated isotopic abundances, and that the correction itself is not dependent on careful background correction of the mass spectrum.

Place, publisher, year, edition, pages
Elsevier, 2019
Keywords
Atom probe tomography (APT), Zirconium diboride (ZrB), Field evaporation characteristics of borides, Elastic recoil detection analysis (ERDA), Compositional correction procedures, Transition metal diborides
National Category
Physical Sciences
Identifiers
urn:nbn:se:liu:diva-160356 (URN)10.1016/j.matchar.2019.109871 (DOI)
Available from: 2019-09-19 Created: 2019-09-19 Last updated: 2019-09-20Bibliographically approved

Open Access in DiVA

fulltext(10140 kB)105 downloads
File information
File name FULLTEXT01.pdfFile size 10140 kBChecksum SHA-512
260455fef33bc0e8c8ddc8f7681749ae5d94011193dacc7211aed321b727c06a434e78810d070ddfcf0b78ec21e9409f9fd1ba59feb4f6ec5d45b96a6b2d041a
Type fulltextMimetype application/pdf
Order online >>

Other links

Publisher's full text

Authority records BETA

Engberg, David L. J.

Search in DiVA

By author/editor
Engberg, David L. J.
By organisation
Thin Film PhysicsFaculty of Science & Engineering
Physical SciencesMaterials EngineeringCeramics

Search outside of DiVA

GoogleGoogle Scholar
Total: 105 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 305 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf