liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A likelihood ratio-based approach for improved source attribution in microbiological forensic investigations
Department of Biological Agents, Division of CBRN Defence and Security, Swedish Defence Research Agency (FOI), Uemå, Sweden.
Department of Biological Agents, Division of CBRN Defence and Security, Swedish Defence Research Agency (FOI), Umeå, Sweden..
Department of Biological Agents, Division of CBRN Defence and Security, Swedish Defence Research Agency (FOI), Umeå, Sweden.
Department of Clinical Microbiology and Molecular Infection Medicine Sweden (MIMS), Umeå University, Sweden.
Visa övriga samt affilieringar
2019 (Engelska)Ingår i: Forensic Science International, ISSN 0379-0738, E-ISSN 1872-6283, Forensic Science International, ISSN 0379-0738, Vol. 302, artikel-id 109869Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

A common objective in microbial forensic investigations is to identify the origin of a recovered pathogenic bacterium by DNA sequencing. However, there is currently no consensus about how degrees of belief in such origin hypotheses should be quantified, interpreted, and communicated to wider audiences. To fill this gap, we have developed a concept based on calculating probabilistic evidential values for microbial forensic hypotheses. The likelihood-ratio method underpinning this concept is widely used in other forensic fields, such as human DNA matching, where results are readily interpretable and have been successfully communicated in juridical hearings. The concept was applied to two case scenarios of interest in microbial forensics: (1) identifying source cultures among series of very similar cultures generated by parallel serial passage of the Tier 1 pathogen Francisella tularensis, and (2) finding the production facilities of strains isolated in a real disease outbreak caused by the human pathogen Listeria monocytogenes. Evidence values for the studied hypotheses were computed based on signatures derived from whole genome sequencing data, including deep-sequenced low-frequency variants and structural variants such as duplications and deletions acquired during serial passages. In the F. tularensis case study, we were able to correctly assign fictive evidence samples to the correct culture batches of origin on the basis of structural variant data. By setting up relevant hypotheses and using data on cultivated batch sources to define the reference populations under each hypothesis, evidential values could be calculated. The results show that extremely similar strains can be separated on the basis of amplified mutational patterns identified by high-throughput sequencing. In the L. monocytogenes scenario, analyses of whole genome sequence data conclusively assigned the clinical samples to specific sources of origin, and conclusions were formulated to facilitate communication of the findings. Taken together, these findings demonstrate the potential of using bacterial whole genome sequencing data, including data on both low frequency SNP signatures and structural variants, to calculate evidence values that facilitate interpretation and communication of the results. The concept could be applied in diverse scenarios, including both epidemiological and forensic source tracking of bacterial infectious disease outbreaks.

Ort, förlag, år, upplaga, sidor
2019. Vol. 302, artikel-id 109869
Nyckelord [en]
Microbial source tracking; Bayes factor; Hypothesis assessment; Listeria monocytogenes; Francisella tularensis; Likelihood ratio
Nationell ämneskategori
Sannolikhetsteori och statistik Bioinformatik och systembiologi Genetik Juridik och samhälle Biokemi och molekylärbiologi
Identifikatorer
URN: urn:nbn:se:liu:diva-159525DOI: 10.1016/j.forsciint.2019.06.027OAI: oai:DiVA.org:liu-159525DiVA, id: diva2:1341821
Tillgänglig från: 2019-08-12 Skapad: 2019-08-12 Senast uppdaterad: 2019-11-15

Open Access i DiVA

fulltext(1565 kB)6 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1565 kBChecksumma SHA-512
02a2b3e5e72cb308436d42516223095160a823a443530289825dc8b552398f4e7ce091b2c122032ff4e54d2498b7f10530aed1f2f34f7cea31039711f18f5a06
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltext

Sök vidare i DiVA

Av författaren/redaktören
Nordgaard, Anders
Av organisationen
Statistik och maskininlärningFilosofiska fakulteten
I samma tidskrift
Forensic Science International
Sannolikhetsteori och statistikBioinformatik och systembiologiGenetikJuridik och samhälleBiokemi och molekylärbiologi

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 6 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 30 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf