liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A validated single-cell-based strategy to identify diagnostic and therapeutic targets in complex diseases
Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för barns och kvinnors hälsa. Linköpings universitet, Medicinska fakulteten.
Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för barns och kvinnors hälsa. Linköpings universitet, Medicinska fakulteten.
Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för barns och kvinnors hälsa. Linköpings universitet, Medicinska fakulteten.
Reg Jonkoping Cty, Sweden.
Visa övriga samt affilieringar
2019 (Engelska)Ingår i: Genome Medicine, ISSN 1756-994X, E-ISSN 1756-994X, Vol. 11, artikel-id 47Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Background

Genomic medicine has paved the way for identifying biomarkers and therapeutically actionable targets for complex diseases, but is complicated by the involvement of thousands of variably expressed genes across multiple cell types. Single-cell RNA-sequencing study (scRNA-seq) allows the characterization of such complex changes in whole organs.

Methods

The study is based on applying network tools to organize and analyze scRNA-seq data from a mouse model of arthritis and human rheumatoid arthritis, in order to find diagnostic biomarkers and therapeutic targets. Diagnostic validation studies were performed using expression profiling data and potential protein biomarkers from prospective clinical studies of 13 diseases. A candidate drug was examined by a treatment study of a mouse model of arthritis, using phenotypic, immunohistochemical, and cellular analyses as read-outs.

Results

We performed the first systematic analysis of pathways, potential biomarkers, and drug targets in scRNA-seq data from a complex disease, starting with inflamed joints and lymph nodes from a mouse model of arthritis. We found the involvement of hundreds of pathways, biomarkers, and drug targets that differed greatly between cell types. Analyses of scRNA-seq and GWAS data from human rheumatoid arthritis (RA) supported a similar dispersion of pathogenic mechanisms in different cell types. Thus, systems-level approaches to prioritize biomarkers and drugs are needed. Here, we present a prioritization strategy that is based on constructing network models of disease-associated cell types and interactions using scRNA-seq data from our mouse model of arthritis, as well as human RA, which we term multicellular disease models (MCDMs). We find that the network centrality of MCDM cell types correlates with the enrichment of genes harboring genetic variants associated with RA and thus could potentially be used to prioritize cell types and genes for diagnostics and therapeutics. We validated this hypothesis in a large-scale study of patients with 13 different autoimmune, allergic, infectious, malignant, endocrine, metabolic, and cardiovascular diseases, as well as a therapeutic study of the mouse arthritis model.

Conclusions

Overall, our results support that our strategy has the potential to help prioritize diagnostic and therapeutic targets in human disease.

Ort, förlag, år, upplaga, sidor
BioMed Central, 2019. Vol. 11, artikel-id 47
Nyckelord [en]
Network tools; scRNA-seq; Biomarker and drug discovery
Nationell ämneskategori
Medicinsk genetik
Identifikatorer
URN: urn:nbn:se:liu:diva-159568DOI: 10.1186/s13073-019-0657-3ISI: 000477887100001PubMedID: 31358043Scopus ID: 2-s2.0-85070062413OAI: oai:DiVA.org:liu-159568DiVA, id: diva2:1342460
Anmärkning

Funding Agencies|Swedish Cancer Foundation [17 0542, 15 0532]; European Commission [305033]; Swedish Research Council [2015-02575, 2015-03495, 2015-03807]; Clinical Cancer Research, Jonkoping, Sweden; Torsten Soderberg Foundation; East Gothia Regional Funding

Tillgänglig från: 2019-08-13 Skapad: 2019-08-13 Senast uppdaterad: 2020-01-16Bibliografiskt granskad

Open Access i DiVA

fulltext(8065 kB)23 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 8065 kBChecksumma SHA-512
d68938350efd8f4069a52bfd25845f1e916fdb70cb532774e9c703ba0153508902ffb2dd93195387ea3d846bf9a4bf4cf7d360c5d04a22fefd04d3e160cf83e5
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextPubMedScopus

Sök vidare i DiVA

Av författaren/redaktören
Gawel, DanutaSerra-Musach, JordiLilja, SandraBiggs, SophieErnerudh, JanHjortswang, HenrikKarlsson, Jan-ErikKöpsén, MattiasJung Lee, Eun JungLentini, AntonioLi, XinxiuMagnusson, MattiasMartinez, DavidNestor, ColmSchafer, SamuelSeifert, OliverSonmez, CeylanTjärnberg, AndreasWu, SimonÅkesson, KarinZhang, HuanGustafsson, MikaBenson, Mikael
Av organisationen
Avdelningen för barns och kvinnors hälsaMedicinska fakultetenAvdelningen för neuro- och inflammationsvetenskapKlinisk immunologi och transfusionsmedicinAvdelningen för kardiovaskulär medicinMagtarmmedicinska klinikenBioinformatikTekniska fakultetenInstitutionen för klinisk och experimentell medicinAvdelningen för cellbiologiAvdelningen för läkemedelsforskningH.K.H. Kronprinsessan Victorias barn- och ungdomssjukhus Linköping/Motala
I samma tidskrift
Genome Medicine
Medicinsk genetik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 23 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 225 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf