liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Aspects of the design, evaluation and accuracy of airborne sensor clusters using time-difference of arrival
Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, Faculty of Science & Engineering. Saab AB, Broderna Ugglas Vag, SE-58188 Linkoping, Sweden; Swedish Def Univ, Sweden.
2019 (English)In: Aerospace Science and Technology, ISSN 1270-9638, E-ISSN 1626-3219, Vol. 92, p. 892-900Article in journal (Refereed) Published
Abstract [en]

One way of improving situational awareness without increasing the risk of detection is to use passive sensor systems. If this capability is provided by several aircraft in a cluster, which can incorporate small basic sensor platforms, advantages can be gained such as longer baselines and an increased number of sensors in the cluster. In this paper, a methodology is presented that links results from signal processing to a Design Space Exploration, DSE, regarding sensor clusters when designing clusters that can operate both independently and in cooperation with other systems. When using Time-Difference of Arrival, the accuracy of the estimated location of a signal source depends on errors in timing and positioning of the sensors, errors in estimating signal arrival times and number of sensors and their spatial distribution. The Cramer-Rao Lower Bound is used to investigate the accuracy of signal source estimates for five different clusters and two levels of timing and positioning accuracy. The results show that the direction of arrival estimates are more accurate than those for the range. Although more sensors generally increased the accuracy, their spatial distribution and baseline related to the distance to the signal source also influence the quality of the results. The DSE process is supported by the collected presentation of the data regarding the measurement accuracy of the different sensor configurations, incorporating both cluster configuration as well as the positioning and timing. Having readily accessible data, the decision makers can focus on choosing the sensor system that meets the operational needs. (C) 2019 Elsevier Masson SAS. All rights reserved.

Place, publisher, year, edition, pages
ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER , 2019. Vol. 92, p. 892-900
Keywords [en]
Design Space Exploration; TDOA; Accuracy; Passive; Estimation; Source position; Sensor cluster
National Category
Aerospace Engineering
Identifiers
URN: urn:nbn:se:liu:diva-161194DOI: 10.1016/j.ast.2019.07.025ISI: 000485852600074OAI: oai:DiVA.org:liu-161194DiVA, id: diva2:1365689
Available from: 2019-10-25 Created: 2019-10-25 Last updated: 2020-02-17
In thesis
1. Sensor and Signature Modeling for Aircraft Conceptual Development
Open this publication in new window or tab >>Sensor and Signature Modeling for Aircraft Conceptual Development
2020 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The aircraft design process has several phases, the first of which is conceptual design. In this phase, models describing an aircraft concept’s properties are used to evaluate its function and identify designs that meet given requirements. Fighter aircraft are generally expected to be capable of communicating, delivering munitions and gathering data about their environment to gain situational awareness. The ability to avoid detection by hostile sensors can also be important, depending on the aircraft’s role.

The design process of the aircraft itself has usually focused on an aircraft’s flight performance and ability to carry loads, e.g. munitions and extra fuel. While acceleration, rate of turn, maximum speed, and operational range are important parameters, the success of military missions also depends on sensor capabilities and signature levels. However, sensor installation and signature reduction measures can affect the aircraft and its flight performance. Whether an aircraft concept fulfills the requirements given is evaluated using simulations in appropriate scenarios. The concept’s performance is assessed using models of aircraft properties, weapon properties, sensor capabilities and signature levels. Models of the aircraft properties are usually connected dynamically, and respond to changes in such things as the size of the concept. However, sensor and signature models are often the result of a separate optimization process and are only statically connected to the aircraft model. The complete aircraft model can be improved by introducing sensor and signature models that dynamically describe both their functions, and their impact on the aircraft. Concurrent design of all the aircraft properties may improve the quality of results from scenario simulations. When models used in simulations contain parameters coupled to each other, analysis of the resulting data is particularly important because that is what supports a decision-maker’s design choice.

Sensor and signature models, in some cases combined with flight performance models, have been used to test methodologies intended for use in conceptual aircraft design. The results show that even seemingly simple models can produce results that can make a significant contribution to the aircraft design process.

Abstract [sv]

Det första steget vid flygplansutveckling är konceptfasen, där alternativa förslag på flygplan representeras av modeller som beskriver det tänkta flygplanets egenskaper. Modellerna används i simuleringar som genomförs i olika scenarion, för att utvärdera och rangordna de olika flygplanskonceptens förmågor. För stridsflygplan är det viktigt att kunna manövrera och leverera vapen såväl som att skaffa och upprätthålla en situationsuppfattning. Beroende på flygplanens roll i uppdraget kan det också vara en prioritet att undgå upptäckt från fiendens sensorer.

Konceptsfasen är vanligtvis inriktad mot flygplanets prestanda och kapacitet att bära last, exempelvis extra bränsle och vapen. Förmågan att framgångsrikt genomföra ett militärt uppdrag beror på egenskaper som har att göra med svängprestanda, acceleration, topphastighet och räckvidd såväl som sensorernas egenskaper och flygplanets signaturnivå. Simuleringar av scenarion med modeller av flygplanets egenskaper, vapenprestanda, sensoregenskaper och signaturnivåer, möjliggör värdering av ett flygplanskoncepts förmåga att genomföra sitt uppdrag på ett tillfredsställande sätt. De modeller som beskriver flygegenskaperna är vanligtvis sammankopplade och ändringar i exempelvis flygplanets storlek påverkar alla modeller. Sensor- och signaturmodeller, är däremot ofta ett resultat av en separat konstruktionsprocess och inte kopplade till exempelvis flygegenskaper. Genom att införa modeller av sensorprestanda och signaturnivåer som är dynamiskt kopplade till flygplanets modeller finns det möjligheter att förbättra konceptanalysen. Resultatet ger möjligheter att få mer fullständigt resultat från simuleringarna i scenarion, vilket i sin tur ger beslutsfattare ett bättre underlag.

I den här avhandlingen presenteras modeller av sensorer och signaturnivåer, avsedda att användas vid konceptkonstruktion av flygplan. Vissa av modellerna är kopplade till modeller för flygprestanda. Resultaten visar att även till synes enkla modeller ger resultat som kan utgöra ett användbart bidrag till konstruktionsprocessen.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2020. p. 66
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 2021
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:liu:diva-163595 (URN)10.3384/diss.diva-163595 (DOI)9789179299866 (ISBN)
Public defence
2020-04-06, Nobel, B Building, Campus Valla, Linköping, 09:15 (English)
Opponent
Supervisors
Available from: 2020-02-20 Created: 2020-02-17 Last updated: 2020-03-09Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Marcus, Carina
By organisation
Theoretical PhysicsFaculty of Science & Engineering
In the same journal
Aerospace Science and Technology
Aerospace Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 8 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf