liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
The generation of qualitative data in information systems research: the diversity of empirical research methods
Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Informatik. Linköpings universitet, Filosofiska fakulteten. Uppsala University, Uppsala, Sweden.
2019 (engelsk)Inngår i: Communications of the Association for Information Systems, ISSN 1529-3181, E-ISSN 1529-3181, Vol. 44, s. 572-599, artikkel-id 28Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

This paper investigates the concept of data collection in information systems qualitative research. In this text, I replace the term “data collection” with “data generation” to emphasize that the researcher arranges situations that produce rich and meaningful data for further analysis. Data generation comprises activities such as searching for, focusing on, noting, selecting, extracting, and capturing data. This paper analyzes and compares a repertoire of empirical research methods for generating qualitative data. It describes and visualizes (through a common data-generation template) 12 research methods: interviewing, questionnaire study, document study, artifact study, observation study, participant observation, intervention study, practice-based design study, lab-based design study, focus group study, test study, and self-reporting. I compare these data-generation methods according to 1) the researcher’s role in data generation, 2) data generation’s influence on everyday life reality, 3) each data-generation method’s relationship to everyday life reality, 4) what parts/mediators of everyday life reality each data-generation method addresses, 5) the expected value of generated data and 6) possible shortcomings in generated data. As a basis for investigating data generation, I ontologically clarify (based on a practice-theoretical perspective) the empirical landscape of information systems (the kinds of phenomena and sources of data that exist). A concluding discussion contains 1) analyses concerning relationships between data-generation methods and compound research methods/strategies such as case study research, action research, and design science research and 2) the role of interpretation in data generation versus data analysis.

sted, utgiver, år, opplag, sider
Association for Information Systems, 2019. Vol. 44, s. 572-599, artikkel-id 28
Emneord [en]
Research Method, Qualitative Research, Data Generation, Data Collection, Information Systems
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-161749DOI: 10.17705/1CAIS.04428Scopus ID: 2-s2.0-85073751877OAI: oai:DiVA.org:liu-161749DiVA, id: diva2:1368863
Tilgjengelig fra: 2019-11-08 Laget: 2019-11-08 Sist oppdatert: 2019-11-14bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Goldkuhl, Göran

Søk i DiVA

Av forfatter/redaktør
Goldkuhl, Göran
Av organisasjonen
I samme tidsskrift
Communications of the Association for Information Systems

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 1 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf