liu.seSearch for publications in DiVA
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Exploring Alternative Massive MIMO Designs: Superimposed Pilots and Mixed-ADCs
Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, Faculty of Science & Engineering.
2020 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The development of information and communication technologies (ICT) provides the means for reaching global connectivity that can help humanity progress and prosper. This comes with high demands on data traffic and number of connected devices which are rapidly growing and need to be met by technological development. Massive MIMO, where MIMO stands for multiple-input multiple-output, is a fundamental component of the 5G wireless communication standard for its ability to provide high spectral and energy efficiency, SE and EE, respectively. The key feature of this technology is the use of a large number of antennas at the base stations (BSs) to spatially multiplex several user equipments (UEs).

In the development of new technologies like Massive MIMO, many design alternatives need to be evaluated and compared in order to find the best operating point with a preferable tradeoff between low cost and complexity. In this thesis, two alternative designs for signal processing and hardware in Massive MIMO are studied and compared with the baseline operation in terms of SE, EE, and power consumption. The first design is called superimposed pilot (SP) transmission and is based on superimposing pilot and data symbols to eliminate the need to reserve dedicated time-frequency resources for pilots. This allows more data to be transmitted and supports longer pilot sequences that, in turn, reduce pilot contamination. The second design is mixed analog-to-digital converters (ADCs) and it aims at balancing the SE performance and the power consumption cost by allowing different ADC bit resolutions across the BS antennas.

The results show that the Massive MIMO baseline, when properly optimized, is the preferred choice in standard deployments and propagation conditions. However, the SP alternative design can increase the SE compared to the baseline by using the Massive-MIMO iterative channel estimation and decoding (MICED) algorithm proposed in this dissertation. In particular, the SE gains are found in cases with high mobility, high carrier frequencies, or high number of spatially multiplexed UEs. For the mixed-ADCs alternative design, improvements in the SE and EE compared to the Massive MIMO baseline can be achieved in cases with distributed BS antennas where interference suppression techniques are used.

Abstract [es]

El desarrollo en tecnologías de información y comunicación (en inglés, ICT) provee los medios para alcanzar la conectividad global que puede ayudar a la humanidad a progresar y prosperar. Esto implica que el avance tecnológico debe satisfacer la alta demanda de tráfico de data y número de equipos conectados que se encuentra en rápido crecimiento. La tecnología de múltiple-entrada múltiple-salida masiva, en inglés Massive MIMO, se considera una pieza fundamental de la quinta generación de comunicaciones inalámbricas (5G) debido a su capacidad de proveer una alta eficiencia espectral y energética (en inglés, SE y EE, respectivamente). Esta tecnología está caracterizada fundamentalmente por el uso de un alto número de antenas en la estación base (en inglés, BS) para multiplexar a varios usuarios en el espacio.

En el desarrollo de nuevas tecnologías como Massive MIMO, muchas alternativas de diseño necesitan ser evaluadas y comparadas para encontrar el mejor punto de operación con un balance conveniente entre complejidad y bajo costo. En esta tesis, dos alternativas de diseño para el procesamiento de señales y el hardware de Massive MIMO son estudiadas y comparadas con la operación del diseño base en términos de eficiencia espectral, eficiencia energética y consumo de potencia. El primer diseño se denomina transmisión de pilotos superpuestos (en inglés, SP) y está basado en la superposición de señales piloto y de datos para eliminar la necesidad de asignar recursos dedicados a señales pilotos. Además, la transmisión de pilotos superpuestos permite reducir la interferencia que surge a raíz de reusar las señales pilotos en distintas celdas, este efecto se denomina contaminación de pilotos (en inglés pilot contamination). El segundo diseño se denomina conversores analógico-adigital (en inglés, ADC) mixtos (en inglés, mixed-ADCs) y se basa en permitir distintas resoluciones de bit en los conversores analógico-a-digital de las antenas en la estación base. Este diseño permite que la resolución de los conversores analógico-a-digital se adapte a las condiciones de propagación de las señales para balancear los beneficios en eficiencia espectral con el costo de potencia consumida.

Los resultados muestran que el diseño base de Massive MIMO, cuando esta optimizado de manera apropiada, es la opción preferida en despliegues y condiciones de propagación estándares. Sin embargo, la transmisión de pilotos superpuestos puede incrementar la eficiencia espectral en comparación al diseño base cuando se combina con el método iterativo para la estimación de canal y decodificación en Massive MIMO propuesto en esta tesis (en inglés, MICED). En particular, las ganancias en eficiencia espectral son obtenidas en escenarios con alta movilidad de usuarios, alta frecuencia portadora, o alto número de usuarios multiplexados en el espacio. Con respecto al diseño alternativo de conversores analógico-a-digital mixtos, la eficiencia espectral y energética pueden ser incrementadas en comparación al diseño base cuando las antenas de la estación base están distribuidas en el espacio y técnicas para suprimir interferencia entre usuarios son usadas.

Abstract [de]

Die Entwicklung der Informations- und Kommunikationstechnologien (ICT) bietet die Möglichkeit eine globale Konnektivität zu erreichen, die Fortschritt und Wohlstand fördern kann. Dies bedeutet zugleich, dass der steigende Datenverkehr und die wachsende Anzahl verbundener Geräte eines entsprechenden technologischen Fortschritts bedarf. Massive MIMO, wobei MIMO für multiple-input multiple-output steht, ist eine fundamentale Komponente des drahtlosen 5G Kommunikationsstandards, da sie eine hohe spektrale Effizienz (SE) und Energieeffizienz bietet (EE). Die Hauptkomponente dieser Technologie ist die Nutzung einer großen Anzahl an Antennen auf Seiten der Basisstationen (BSs) um mehrere Nutzer zu bedienen, die ihre Signale zur selben Zeit auf derselben Frequenz senden während sie in der räumlichen Domäne getrennt sind (spatial multiplexing).

In der Entwicklung neuer Technologien wie Massive MIMO müssen viele Designalternativen evaluiert und verglichen werden um den optimalen Betriebspunkt im Sinne eines sinnvollen Gleichgewichts zwischen Kosteneffizienz und Komplexität zu finden.

In dieser Doktorarbeit werden zwei alternative Designs für Signalverarbeitung und Hardware in Massive MIMO Systemen untersucht und in Bezug auf spektrale Effizienz, Energieeffizienz und Stromverbrauch mit dem Massive MIMO Basisdesign verglichen. Das erste Design heißt überlagerte Pilotton Übertragung (superimposed pilot, SP) und basiert auf der Überlagerung von Pilotton und Datensignal, damit nicht mehr die Notwendigkeit besteht bestimmte Ressourcen für Pilottöne zu reservieren. Dies ermöglicht die Übertragung größerer Datenmengen und reduziert die Interferenz, die aus der wiederholten Nutzung der Pilottöne in verschiedenen Zellen resultiert (pilot contamination). Das zweite Design nennt sich gemischte analog zu digital Konverter (mixed analog-to-digital converters, ADCs) und erlaubt es einen Kompromiss zwischen hoher spektraler Effizienz und niedrigem Stromverbrauch zu finden. Dies geschieht indem die Bit Auflösung an jeder BS Antenne an die Ausbreitungsbedingungen der Signale angepasst wird.

Die Resultate zeigen, dass das Massive MIMO Basisdesign, wenn es richtig optimiert ist, bei Standardeinsätzen und unter normalen Ausbreitungsbedingungen, die bevorzugte Wahl ist. Das alternative SP Design kann jedoch die spektrale Effizienz im Vergleich zum Basisdesign durch die Nutzung des in dieser Dissertation vorgeschlagenen Massive MIMO iterativen Kanalschätzungs- und Dekodierungsalgorithmus (MICED) erhöhen. Die verbesserte spektrale Effizienz findet sich insbesondere in Fällen hoher Nutzermobilität, hoher Frequenzen oder hoher Anzahl an gleichzeitig bedienter Nutzer. Das gemischte analog zu digital Konverter Design ermöglicht in Fällen verteilter Basisstationen bei denen Interferenz unterdrückende Techniken genutzt werden eine verbesserte spektrale Effizienz und Energieeffizienz.

Abstract [sv]

Utvecklingen av informations- och kommunikationsteknik (IKT) gör det möjligt för människor från hela världen att kopplas samman och utbyta kunskaper. Ju mer vi vet och förstår om varandra, desto större är chansen att mänskligheten kan uppnå globala utvecklingsmål och välstånd.

IKT-utvecklingen är associerad med höga krav på datatakter och antal uppkopplade enheter. Dessa krav ökar ständigt och måste mötas med teknologisk utveckling. Massiv MIMO, där MIMO står för multiple-input multiple-output, är flerantennteknik och en grundsten i nästa generations trådlösa kommunikationssystem. Huvudanledningen till detta är att tekniken kan förbättra spektraleffektiviteten (SE), vilket är ett mått på hur väl vi kan kommunicera data över begränsade radiofrekvensresurser. Tekniken förbättrar även energieffektiviteten (EE), vilket är ett mått på hur effektivt tekniken använder energi till att kommunicera data.

Massiv MIMO bygger på användandet av ett stort antal av antenner på basstationerna för att kommunicera med ett flertal användare samtidigt och på samma frekvensresurser. Detta möjliggörs genom ”rumslig multiplexing” vilket betyder att signaler från användare på olika platser kan separeras på basstationen i den rumsliga domänen. Denna separering kräver att basstationen först mäter egenskaperna hos signaler som kommer från de olika användarnas positioner.

När en ny teknik, såsom Massiv MIMO, utvecklas är det viktigt att olika alternativa designer utvärderas och jämförs för att identifiera den bästa varianten. Detta kan exempelvis vara den variant som uppnår en viss balans mellan hög kommunikationsprestanda och låg kostnad. I denna avhandling utvärderas två alternativa sätt att designa signalbehandlingen och hårdvaran i Massiv MIMO. Dessa jämförs med konventionell Massiv MIMO i termer av SE, EE och effektförbrukning.

Den första alternativa designen kallas överlagrade piloter och bygger på att kända pilotsignaler och okända datasignaler skickas samtidigt från användarna, istället för efter varandra. Pilotsignalerna används för att mäta upp de trådlösa kanalerna som signalerna färdas över medan datasignalerna innehåller den information som ska kommuniceras. Genom att överlagra pilotsignalerna så behövs inga dedikerade radioresurser för piloter och därmed finns det mer resurser för datasändning. Dessutom minskar överlagrandet de störningar som kommer från andra användare som använder samma pilot, vilket kallas pilotkontaminering.

Den andra alternativa designen kallas mixade analog-till-digital (AD) omvandlare. En AD-omvandlare är en krets som behövs på varje antenn för att omvandla analoga radiosignaler till digitala signaler som kan processas i en dator. Bitupplösningen i AD-omvandlaren avgör hur många nivåer som kan användas för att representera den analoga signalen. Ju högre bitupplösning desto fler nivåer och därmed en mer noggrann representation, men detta leder även till högre beräkningskomplexitet och effektförbrukning. Mixade AD-omvandlare försöker balansera mellan hög prestanda och låg komplexitet genom att optimera bitupplösningen på varje antenn i ett Massiv MIMO system.

Avhandlingens resultat visar att det går att öka SE i Massiv MIMO genom att använda överlagrade piloter, ifall den föreslagna algoritmen MICED (Massive-MIMO iterative channel estimation and decoding) används. Förbättringarna är särskilt stora när användarna har hög mobilitet, när en hög bärfrekvens används eller när antalet rumsligt multiplexade användare är högt. När det gäller mixade AD-omvandlare så kan små förbättringar i SE uppnås, jämfört med konventionell Massiv MIMO, när bitupplösningen i AD-omvandlarna optimeras under förutsättning att signalstyrkan varierar mellan basstationens antenner.

Sammanfattningsvis så kan de alternativa designerna av Massiv MIMO som studerats i avhandlingen ge små prestandaförbättringar jämfört med konventionella metoder. Men trots detta så kan de konventionella metoderna uppnå en bra avvägning mellan hög prestanda och låg komplexitet ifall de optimeras väl.  

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2020. , p. 116
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 2041
National Category
Telecommunications
Identifiers
URN: urn:nbn:se:liu:diva-163131DOI: 10.3384/diss.diva-163131ISBN: 9789179299217 (print)OAI: oai:DiVA.org:liu-163131DiVA, id: diva2:1385646
Public defence
2020-02-13, Ada Lovelace, Campus Valla, Linköping, 13:15 (English)
Opponent
Supervisors
Available from: 2020-01-15 Created: 2020-01-15 Last updated: 2020-01-24Bibliographically approved
List of papers
1. Spectral and Energy Efficiency of Superimposed Pilots in Uplink Massive MIMO
Open this publication in new window or tab >>Spectral and Energy Efficiency of Superimposed Pilots in Uplink Massive MIMO
2018 (English)In: IEEE Transactions on Wireless Communications, ISSN 1536-1276, E-ISSN 1558-2248, Vol. 17, no 11, p. 7099-7115Article in journal (Refereed) Published
Abstract [en]

Next-generation wireless networks aim at providing substantial improvements in spectral efficiency (SE) and energy efficiency (EE). Massive MIMO has been proved to be a viable technology to achieve these goals by spatially multiplexing several users using many base station (BS) antennas. A potential limitation of massive MIMO in multicell systems is pilot contamination, which arises in the channel estimation process from the interference caused by reusing pilots in neighboring cells. A standard method to reduce pilot contamination, known as regular pilot (RP), is to adjust the length of pilot sequences while transmitting data and pilot symbols disjointly. An alternative method, called superimposed pilot (SP), sends a superposition of pilot and data symbols. This allows use of longer pilots which, in turn, reduces pilot contamination. We consider the uplink of a multicell massive MIMO network, with i.i.d. Rayleigh fading channels, using maximum ratio combining and compare RP and SP in terms of SE and EE. To this end, we derive rigorous closed-form achievable rates with SP under a practical random BS deployment. We prove that the reduction of pilot contamination with SP is outweighed by the additional coherent and non-coherent interference. Numerical results show that when both methods are optimized, RP achieves comparable SE and EE to SP in practical scenarios.

Place, publisher, year, edition, pages
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 2018
Keywords
Massive MIMO; spatial multiplexing; spectral efficiency (SE); energy efficiency (EE); superimposed pilots (SP); channel estimation; pilot contamination; achievable rates; stochastic geometry
National Category
Telecommunications
Identifiers
urn:nbn:se:liu:diva-153185 (URN)10.1109/TWC.2018.2860939 (DOI)000449978700001 ()
Conference
36th IEEE Global Communications Conference (GLOBECOM)
Note

Funding Agencies|ELLIIT; Swedish Foundation for Strategic Research (SSF); ERC [MORE 305123]

Available from: 2018-11-30 Created: 2018-11-30 Last updated: 2020-01-15
2. Joint UL and DL Spectral Efficiency Optimization of Superimposed Pilots in Massive MIMO
Open this publication in new window or tab >>Joint UL and DL Spectral Efficiency Optimization of Superimposed Pilots in Massive MIMO
2017 (English)In: Proceedings of 2017 IEEE Globecom Workshops (GC Wkshps), IEEE, 2017, p. 1-7Conference paper, Published paper (Refereed)
Abstract [en]

The reuse of pilot sequences in a Massive MIMO system leads to pilot contamination, which reduces the channel estimation quality and adds coherent interference in the data transmission. A standard method to reduce pilot contamination, known as regular pilots (RPs), is to increase the pilot overhead and reuse pilots more sparsely in the network. Another approach, denoted as superimposed pilots (SPs), is to send a superposition of pilot and data symbols which allows the system to reuse pilots far more sparsely. This work performs a comparative analysis of RPs and SPs in Massive MIMO considering the joint spectral efficiency (SE) of the uplink (UL) and downlink (DL) communications. A rigorous DL lower bound on the capacity with SPs is derived and multiobjective optimization theory is used to compare the UL and DL SE between RPs and SPs. Numerical results indicate that RPs and SPs give comparable SE when both methods are optimized.

Place, publisher, year, edition, pages
IEEE, 2017
Series
IEEE Globecom Workshops
Keywords
MIMO communication, channel estimation, data communication, optimisation, DL spectral efficiency optimization, SP, channel estimation quality, data symbols, data transmission, joint spectral efficiency, massive MIMO system, pilot contamination, pilot overhead, pilot sequences, superimposed pilots, Antennas, Contamination, Interference, Optimization, Uplink
National Category
Telecommunications
Identifiers
urn:nbn:se:liu:diva-145678 (URN)10.1109/GLOCOMW.2017.8269159 (DOI)000426984700128 ()9781538639207 (ISBN)9781538639214 (ISBN)
Conference
4-8 Dec 2017 Globecom Workshops (GC Wkshps), Singapore, Singapore
Note

Funding agencies: Swedish Foundation for Strategic Research (SSF); ERC Starting MORE [305123]; Swedish Research Council; ELLIIT

Available from: 2018-03-15 Created: 2018-03-15 Last updated: 2020-01-15Bibliographically approved
3. Optimal Power Control for Superimposed Pilots in Uplink Massive MIMO Systems
Open this publication in new window or tab >>Optimal Power Control for Superimposed Pilots in Uplink Massive MIMO Systems
2018 (English)In: 2018 CONFERENCE RECORD OF 52ND ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS, Institute of Electrical and Electronics Engineers (IEEE), 2018, p. 499-503Conference paper, Published paper (Refereed)
Abstract [en]

In Massive MIMO, the pilot contamination effect reduces the spectral efficiency (SE) gains and superimposed pilot (SP) transmission has been proposed to mitigate this effect. SP is based on transmitting pilot and data symbols simultaneously to allow for longer pilots and no pilot overhead. This work studies the optimal power control strategies in the uplink of a Massive MIMO system with SP and detection based on maximum ratio combining The optimization objectives arc maximum product of SINRs and max-min fairness, and these problems are reformulated as geometric programs which allow for efficient implementations. The numerical results indicate that the SE gains from the optimal power control with respect to the heuristic statistical channel inversion power control, are more significant when the interference from pilot symbols is subtracted before data detection.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2018
Series
Conference Record of the Asilomar Conference on Signals Systems and Computers, ISSN 1058-6393
National Category
Signal Processing
Identifiers
urn:nbn:se:liu:diva-158405 (URN)10.1109/ACSSC.2018.8645504 (DOI)000467845100087 ()2-s2.0-85062964217 (Scopus ID)978-1-5386-9218-9 (ISBN)
Conference
52nd Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 28-31 Oct. 2018
Available from: 2019-06-28 Created: 2019-06-28 Last updated: 2020-01-15Bibliographically approved
4. Massive-MIMO Iterative Channel Estimation and Decoding (MICED) in the Uplink
Open this publication in new window or tab >>Massive-MIMO Iterative Channel Estimation and Decoding (MICED) in the Uplink
Show others...
2019 (English)In: IEEE Transactions on Communications, ISSN 0090-6778, E-ISSN 1558-0857, p. 1-1Article in journal (Refereed) Epub ahead of print
Abstract [en]

Massive MIMO uses a large number of antennas to increase the spectral efficiency (SE) through spatial multiplexing of users, which requires accurate channel state information. It is often assumed that regular pilots (RP), where a fraction of the time-frequency resources is reserved for pilots, suffices to provide high SE. However, the SE is limited by the pilot overhead and pilot contamination. An alternative is superimposed pilots (SP) where all resources are used for pilots and data. This removes the pilot overhead and reduces pilot contamination by using longer pilots. However, SP suffers from data interference that reduces the SE gains. This paper proposes the Massive-MIMO Iterative Channel Estimation and Decoding (MICED) algorithm where partially decoded data is used as side-information to improve the channel estimation and increase SE. We show that users with precise data estimates can help users with poor data estimates to decode. Numerical results with QPSK modulation and LDPC codes show that the MICED algorithm increases the SE and reduces the block-error-rate with RP and SP compared to conventional methods. The MICED algorithm with SP delivers the highest SE and it is especially effective in scenarios with short coherence blocks like high mobility or high frequencies.

Place, publisher, year, edition, pages
Piscataway, New Jersey, US: IEEE, 2019
Keywords
Channel estimation, Interference, Time-frequency analysis, Contamination, Signal processing algorithms, Iterative decoding
National Category
Signal Processing
Identifiers
urn:nbn:se:liu:diva-163132 (URN)10.1109/TCOMM.2019.2947906 (DOI)
Available from: 2020-01-15 Created: 2020-01-15 Last updated: 2020-01-20Bibliographically approved
5. Hardware Design and Optimal ADC Resolution for Uplink Massive MIMO Systems
Open this publication in new window or tab >>Hardware Design and Optimal ADC Resolution for Uplink Massive MIMO Systems
2016 (English)In: IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM), Rio de Janeiro, Brazil, July 2016, Institute of Electrical and Electronics Engineers (IEEE), 2016, p. 1-5Conference paper, Published paper (Refereed)
Abstract [en]

This work focuses on the hardware design for the efficient operation of Massive multiple-input multiple-output (MIMO) systems. A closed-form uplink achievable data rate expression is derived considering imperfect channel state information (CSI) and hardware impairments. We formulate an optimization problem to maximize the sum data rate subject to a constraint on the total power consumption. A general power consumption model accounting for the level of hardware impairments is utilized. The optimization variables are the number of base station (BS) antennas and the level of impairments per BS antenna. The resolution of the analog-to-digital converter (ADC) is a primary source of such impairments. The results show the trade-off between the number of BS antennas and the level of hardware impairments, which is important for practical hardware design. Moreover, the maximum power consumption can be tuned to achieve maximum energy efficiency (EE). Numerical results suggest that the optimal level of hardware impairments yields ADCs of 4 to 5 quantization bits.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2016
Series
Sensor Array and Multichannel Signal Processing Workshop (SAM), E-ISSN 2151-870X ; 2016
National Category
Communication Systems
Identifiers
urn:nbn:se:liu:diva-137324 (URN)10.1109/SAM.2016.7569654 (DOI)9781509021031 (ISBN)9781509021048 (ISBN)
Conference
IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM) 2016, 10-13 July 2016, Rio de Janerio, Brazil
Available from: 2017-05-12 Created: 2017-05-12 Last updated: 2020-01-15Bibliographically approved
6. Per-antenna hardware optimization and mixed resolution ADCs in uplink massive MIMO
Open this publication in new window or tab >>Per-antenna hardware optimization and mixed resolution ADCs in uplink massive MIMO
2017 (English)In: Conference Record of The Fifty-FirstAsilomar Conference on Signals, Systems & Computers / [ed] Michael B. Matthews, IEEE conference proceedings, 2017, p. 27-31Conference paper, Published paper (Refereed)
Abstract [en]

Massive multiple-input multiple-output (MIMO) is a key technology for next generation wireless networks that deploys many antennas at the base stations (BSs). This requires low-complexity hardware at each antenna branch that, in turn, increases distortions. This work studies the selection of per-antenna hardware quality in terms of analog-to-digital converters (ADCs) resolution. A new achievable spectral efficiency (SE) expression is derived and majorization theory is used to analyze the order preserving properties of the SE and the power consumption with respect to the per-antenna ADC resolutions. That is, given a fixed sum of ADC resolutions across the antenna array, is it preferable to use an equal-ADC over a mixed-ADC approach? The results show that having equal-resolution ADCs across the antenna array maximizes the SE and minimizes the power consumption.

Place, publisher, year, edition, pages
IEEE conference proceedings, 2017
Series
Signals, Systems & Computers, E-ISSN 2576-2303 ; 2017
Keywords
Distortion, Hardware, MIMO communication, Power demand, Antenna arrays, Complexity theory
National Category
Telecommunications Signal Processing Communication Systems
Identifiers
urn:nbn:se:liu:diva-148777 (URN)10.1109/ACSSC.2017.8335129 (DOI)000442659900005 ()9781538618233 (ISBN)9781538606667 (ISBN)9781538618240 (ISBN)
Conference
2017 51st Asilomar Conference on Signals, Systems, and Computers. Pacific Grove, CA, USA. 29 Oct.-1 Nov. 2017
Funder
ELLIIT - The Linköping‐Lund Initiative on IT and Mobile CommunicationsSwedish Foundation for Strategic Research
Note

Funding agencies: EPSRC [EP/P000673/1]

Available from: 2018-06-19 Created: 2018-06-19 Last updated: 2020-01-15Bibliographically approved

Open Access in DiVA

fulltext(5306 kB)116 downloads
File information
File name FULLTEXT01.pdfFile size 5306 kBChecksum SHA-512
6d3ee20f06bb991bc7a623ebbef44365ff73c89ba84a102d6b0afcfa586adb7c1ce53b8be2eb9239998d27a496cb9b667dbd2c17a53a8db64925efff04ac745c
Type fulltextMimetype application/pdf
Order online >>

Other links

Publisher's full text

Authority records BETA

Verenzuela, Daniel

Search in DiVA

By author/editor
Verenzuela, Daniel
By organisation
Communication SystemsFaculty of Science & Engineering
Telecommunications

Search outside of DiVA

GoogleGoogle Scholar
Total: 116 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 762 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf