liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Electrocatalytic Production of Hydrogen Peroxide with Poly(3,4-ethylenedioxythiophene) Electrodes
Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.ORCID-id: 0000-0001-8478-4663
Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär fysik. Linköpings universitet, Tekniska fakulteten.ORCID-id: 0000-0003-3899-4891
Visa övriga samt affilieringar
2019 (Engelska)Ingår i: Advanced Sustainable Systems, ISSN 2366-7486, Vol. 3, nr 2, s. 1-6, artikel-id 1800110Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Electrocatalysis for energy‐efficient chemical transformations is a central concept behind sustainable technologies. Numerous efforts focus on synthesizing hydrogen peroxide, a major industrial chemical and potential fuel, using simple and green methods. Electrochemical synthesis of peroxide is a promising route. Herein it is demonstrated that the conducting polymer poly(3,4‐ethylenedioxythiophene), PEDOT, is an efficient and selective heterogeneous catalyst for the direct reduction of oxygen to hydrogen peroxide. While many metallic catalysts are known to generate peroxide, they subsequently catalyze decomposition of peroxide to water. PEDOT electrodes can support continuous generation of high concentrations of peroxide with Faraday efficiency remaining close to 100%. The mechanisms of PEDOT‐catalyzed reduction of O2 to H2O2 using in situ spectroscopic techniques and theoretical calculations, which both corroborate the existence of a chemisorbed reactive intermediate on the polymer chains that kinetically favors the selective reduction reaction to H2O2, are explored. These results offer a viable method for peroxide electrosynthesis and open new possibilities for intrinsic catalytic properties of conducting polymers.

Ort, förlag, år, upplaga, sidor
Wiley-VCH Verlagsgesellschaft, 2019. Vol. 3, nr 2, s. 1-6, artikel-id 1800110
Nationell ämneskategori
Materialkemi
Identifikatorer
URN: urn:nbn:se:liu:diva-163609DOI: 10.1002/adsu.201800110ISI: 000458426200002OAI: oai:DiVA.org:liu-163609DiVA, id: diva2:1393649
Tillgänglig från: 2020-02-17 Skapad: 2020-02-17 Senast uppdaterad: 2020-02-25Bibliografiskt granskad
Ingår i avhandling
1. Organic electronic materials for hydrogen peroxide production
Öppna denna publikation i ny flik eller fönster >>Organic electronic materials for hydrogen peroxide production
2020 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Hydrogen peroxide (H2O2) is an important oxidant, used in various fields of industry, such as paper manufacturing, production of polymers, detergents, and cosmetics. Considering that the molecule degrades only to H2O and O2, it is regarded as a green chemical. Unfortunately, the incumbent method of H2O2 synthesis, based on anthraquinone oxidation, although efficient, is not environmentally friendly, as it requires fossil fuels and significant energy input. Therefore, there are efforts underway to reduce the ecological impact of hydrogen peroxide production. Some of the most promising approaches involve catalytic reduction of O2 to H2O2 in an aqueous environment. This can be coupled with water oxidation. As the required energy could be delivered in different ways, hydrogen peroxide synthesis can be achieved by electrocatalysis, photoelectrocatalysis, or photocatalysis.

This thesis explores the possibility of using organic electronic materials as catalysts for H2O2 evolution in oxygenated water solutions. Organic electronics is a field of materials science focused on conducting and semiconducting organic molecules. These materials offer many possible advantages, related to low cost, flexibility, and good optoelectronic properties. Huge progress in the field over the last years led to their commercial applications in e.g. organic light emitting diodes and photovoltaics. Only very recently have organic electronics begun to be considered from the point of view of catalysis.

In the first two papers, we investigate electrocatalytic activity of an organic pigment (PTCDI) and a conducting polymer (PEDOT) towards oxygen reduction to hydrogen peroxide. Both types of catalysts are chemically stable and able to operate in a wide pH range. In paper 3, we demonstrate that H2O2-evolving photocathodes can be based on an organic PN heterojunction, giving devices of a record-breaking performance. In the first part of paper 4, the same concept was tested for a naturally-occurring semiconductor, eumelanin, leading to a first report of photoelectrocatalytic properties of this material. In the second part of paper 4, as well as in papers 5 and 6, we explore, respectively, photochemical hydrogen peroxide synthesis with eumelanin, organic semiconductors, and organic dyes. We show that the photostability of catalysts is higher for materials with low-lying HOMO level and it can be increased by an addition of a reducing agent to the reaction system. Our findings prove that already existing organic electronic materials can be successfully applied in H2O2 evolution for environmentally friendly chemical synthesis, suggesting their use in harvesting of solar energy and in situ generation of hydrogen peroxide for biomedical applications.

Abstract [sv]

Väteperoxid (H2O2) är en viktig oxidant som används inom olika industrier, såsom papperstillverkning och produktion av polymerer, tvättmedel och kosmetika. Med tanke på att molekylen bryts ner till vatten (H2O) och syre (O2) betraktas den som en grön kemikalie. Tyvärr är den befintliga metoden för framställning av H2O2 baserad på oxidation av en antrakinon, en metod som är effektiv, men inte miljövänlig eftersom den kräver fossila bränslen och betydande energitillförsel. Det pågår därför ansträngningar för att minska den ekologiska effekten av väteperoxidproduktionen. Några av de mest lovande metoderna involverar katalytisk O2 till H2O2-reduktion i vattenlösning, kombinerat med vattenoxidation. Eftersom den nödvändiga energin kan levereras på olika sätt kan väteperoxidsyntesen uppnås genom elektrokatalys, fotoelektrokatalys eller fotokatalys.

Denna avhandling undersöker möjligheten att använda organiska elektroniska material som katalysatorer för framställning av H2O2i syresatta vattenlösningar. Organisk elektronik är ett område inom materialvetenskap med fokus på ledande och halvledande organiska molekyler. Dessa material erbjuder många fördelar, såsom låg kostnad, flexibilitet och goda optoelektroniska egenskaper. Enorma framsteg på området har under de senaste åren lett till deras kommersiella tillämpningar i till exempel organiska ljusemitterande dioder och fotovoltaik. Nyligen har också organisk elektronik börjat övervägas ur katalysens synvinkel.

I de två första artiklarna undersöker vi en elektrokatalytisk aktivitet av ett organiskt pigment (PTCDI) och en ledande polymer (PEDOT) i respekt till syrereduktion och väteperoxidproduktion. Båda typerna av katalysatorer är kemiskt stabila och kan arbeta inom ett brett pH-område. I artikel 3 visar vi att H2O2-producerande fotokatoder kan baseras på en organisk PN-gränsyta, vilket ger enheter med en rekordbrytande kapacitet. I den första delen av artikel 4 testades samma koncept för en naturligt förekommande halvledare, eumelanin, vilket ledde till en första rapport om fotoelektrokatalytiska egenskaper hos detta material. I den andra delen av artikel 4, samt i artikel 5 och 6, undersöker vi fotokemisk väteperoxidsyntes med eumelanin, organiska halvledare och organiska färgämnen. Vi visar att fotostabiliteten hos katalysatorer är högre för material med lågt liggande HOMO-nivå och att den kan ökas genom en tillsats av ett reduktionsmedel till reaktionssystemet. Våra fynd visar att redan befintliga organiska elektroniska material framgångsrikt kan tillämpas i H2O2-utvecklingen för miljövänlig kemisk syntes, vilket antyder att de kan användas för att ta tillvara på solenergi och för produktion av väteperoxid inom biomedicin.

Ort, förlag, år, upplaga, sidor
Linköping: Linköping University Electronic Press, 2020. s. 92
Serie
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 2037
Nyckelord
hydrogen peroxide, catalysis, organic materials, electronics
Nationell ämneskategori
Materialkemi
Identifikatorer
urn:nbn:se:liu:diva-163895 (URN)10.3384/diss.diva-163895 (DOI)9789179299392 (ISBN)
Disputation
2020-03-30, K1, Kåkenhus, Campus Norrköping, Norrköping, 10:15 (Engelska)
Opponent
Handledare
Forskningsfinansiär
Knut och Alice Wallenbergs Stiftelse, WCMM-LiU
Tillgänglig från: 2020-02-25 Skapad: 2020-02-25 Senast uppdaterad: 2020-03-02Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Personposter BETA

Mitraka, EvangeliaGryszel, MaciejVagin, MikhailJafari, Mohammad JavadSingh, AmritpalWarczak, MagdalenaBerggren, MagnusEderth, ThomasZozoulenko, IgorCrispin, XavierGlowacki, Eric

Sök vidare i DiVA

Av författaren/redaktören
Mitraka, EvangeliaGryszel, MaciejVagin, MikhailJafari, Mohammad JavadSingh, AmritpalWarczak, MagdalenaBerggren, MagnusEderth, ThomasZozoulenko, IgorCrispin, XavierGlowacki, Eric
Av organisationen
Laboratoriet för organisk elektronikTekniska fakultetenMolekylär fysik
Materialkemi

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 157 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf