liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Electronic transitions and correlation effects: From pure elements to complex materials
Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0002-9272-7383
2020 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Macroscopic properties of real materials, such as conductivity, magneticproperties, crystal structure parameters, etc. are closely related or evendetermined by the configuration of their electrons, characterized by electronicstructure. By changing the conditions, e.g, pressure, temperature, magnetic/electric field, chemical doping, etc. one can modify the electronic structure ofsolids and therefore induce a phase transition(s) between different electronic andmagnetic states. One famous example is a Mott metal-to-insulator phase transition,at which a material undergoes a significant, often many orders of magnitude, changeof conductivity caused by the interplay between itineracy and localization of thecarriers.

Electronic topological transitions (ETT) involvechanges in the topology of a metal's Fermi surface. This thesis investigates theeffect of such electronic transitions in various materials, ranging from pureelements to complex compounds.

To describe the interplay between electronic transitionsand properties of real materials,different state-of-the-art computational methods are used. The densityfunctional theory(DFT), as well as the DFT + U method, is used to calculatestructural properties. The validity of recently introduced exchange-correlationfunctionals, such as the strongly constrained and appropriately normed (SCAN)functional, is also assessed for magnetic elements. In order toinclude dynamical effects of electron interactions we use the DFT + dynamical meanfield theory (DFT + DMFT) method.

Experiments in hcp-Os have reported peculiarities in the ratio betweenlattice parameters at high pressure. Previous calculations have suggested these transitions maybe related to ETTs and even crossings of core levels at ultra high pressure. Inthis thesis it is shownthat the crossing of core levels is a general feature of heavy transitionmetals. Experiments have therefore been performed to look for indications ofthis transition in Ir using X-ray absorption spectroscopy. In NiO, strongrepulsion between electrons leads to a Mott insulating state at ambientconditions. It has long been predicted that high pressure will lead to aninsulator-to-metal transition. This has been suggested to be accompanied by aloss of magnetic order, and a structural phase transition. In collaboration withexperimentalists we look for thistransition by investigating the X-ray absorption spectra as well as themagnetic hyperfine field. We find no evidence of a Mott transition up to 280GPa. In the Mott insulator TiPO4, application of external pressure has beensuggested to lead to a spin-Peierls transition at room temperature. Weinvestigate the dimerisation and the magnetic structure of TiPO4 at high pressure.As pressure is increased further, TiPO4 goes through a metal to insulatortransition before an eventual crystallographic phase transition. Remarkably, thenew high pressure phases are found to be insulators; the Mott insulating stateis restored.

MAX phases are layered materials that combinemetallic and ceramic properties and feature layers of M-metal and X-C or N atomsinterconnected by A-group atoms. Magnetic MAX-phases with their low dimensionalmagnetism are promising candidates for applications in e.g., spintronics.The validity of various theoretical approaches are discussed in connection tothe magnetic MAX-phase Mn2GaC. Using DFT and DFT + DMFT we consider the hightemperature paramagnetic state, and whether the magnetic moments are formed bylocalized or itinerant electrons.

Abstract [sv]

Ett materials makroskopiska egenskaper, såsom ledningsförmåga, magnetiska egenskaper, kristallstrukturparametrar, etc. är relaterade till, eller till och med bestämda av elektronernas konfiguration, vilken karakteriseras av elektronstrukturen. Genom att ändra förhållandena, till exempel via tryck, temperatur, magnetiska och/eller elektriska fält, dopning, etc. är det möjligt att modifiera elektronstrukturen hos ett material, och därigenom inducera fasövergångar mellan olika magnetiska och elektron-tillstånd. Mott metall-till-isolator övergången är ett berömt exempel på en fasövergång, då ett material genomgår en omfattande, ofta flera tiopotenser, förändring i ledningsförmåga, orsakad av samspelet mellan ambulerande och lokaliserade laddningsbärare.

Vid en elektronisk-topologisk övergång (eng. electronic topological transition, ETT) sker förändringar i elektronernas energifördelning vilket modifierar materialets Fermi-yta. I den här avhandlingen undersöks dylika övergångar i olika material, från rena grundämnen till komplicerade föreningar.

Flera olika toppmoderna beräkningsmetoder används för att redogöra för samspelet mellan elektroniska fasövergångar och egenskaper hos riktiga material. Täthetsfunktionalterori (eng. density functional theory, DFT), samt DFT + U, har används för att beräkna strukturella egenskaper. Lämplighetsgraden i att använda nyligen publicerade exchangecorrelation- funktionaler, såsom SCAN (eng. strongly constrained and appropriately normed), för att beskriva magnetiska grundämnen undersöks även. För att inkludera dynamiska elektronkorrelationer använder vi metoden DFT + dynamisk medelfältteori (eng. dynamical mean field theory, DMFT).

Experiment utförda på hcp-Os vid högt tryck visar underliga hopp i kvoten mellan gitterparametrar. Tidigare beräkningar har indikerat att dessa övergångar kan vara relaterade till elektronisk-topologiska övergångar och korsande av kärntillstånd. I den här avhandlingen visas också att korsning av kärntillstånden är en generell egenskap hos tunga övergångsmetaller. Därför utförs röntgenabsorptionsexperiment på Ir för att leta efter tecken på denna typ av övergång. Övergångsmetalloxiden NiO har sedan länge förutspåtts genomgå en isolator till metall Mott-övergång. Det har föreslagits att denna övergång sker vid höga tryck i samband med att materialets magnetiska ordning försvinner och en strukturell övergång sker. I samarbete med experimentalister letar vi efter denna övergång genom att studera röntgenabsorptionsspektra och det magnetiska hyperfina fältet. Vi ser inga indikationer på en Mott-övegång, upp till ett tryck på 280 GPa. Det har föreslagits att Mott-isolatorn TiPO4 genomgår en så kallad spin-Peierls-övergång, vid rumstemperatur, när tryck appliceras. Vi undersöker dimeriseringen och den magnetiska strukturen i TiPO4 som funktion av tryck. Vid höga tryck genomgår TiPO4 ytterligare övergångar, från en isolerande till en metallisk fas för att slutligen genomgå en strukturell övergång. De nya högtrycksfaserna visar sig anmärkningsvärt vara Mott-isolatorer.

MAX-faser är en grupp material med specifik kristallstruktur, som kombinerar egenskaper från keramiska material och metaller. En MAX-fas består av lager av M –metall-atomer – och X – kol- eller kväveatomer – vilka sammanbinds av atomer från grupp A. Magnetiska MAX-faser som visar magnetiska egenskaper, liknande de för lågdimensionella material, är lovande kandidater för applikation inom exempelvis spinntronik. Den här avhandlingen undersöker lämplighetsgraden i att använda diverse teoretiska metoder för att beskriva magnetiska MAX-faser. Med hjälp av DFT och DFT + DMFT undersöker vi den paramagnetiska högtemperaturfasen och huruvida de magnetiska momenten bildas av lokaliserade eller ambulerande elektroner.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2020. , p. 70
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 2053
Keywords [en]
Electronic transition, solid state physics, condensed matter physics, correlation effects
National Category
Condensed Matter Physics
Identifiers
URN: urn:nbn:se:liu:diva-164113DOI: 10.3384/diss.diva-164113ISBN: 9789179298852 (print)OAI: oai:DiVA.org:liu-164113DiVA, id: diva2:1415078
Public defence
2020-04-24, Planck, F Building, Campus Valla, Linköping, 10:15 (English)
Opponent
Supervisors
Available from: 2020-03-17 Created: 2020-03-17 Last updated: 2020-04-22Bibliographically approved
List of papers
1. Assessing the SCAN functional for itinerant electron ferromagnets
Open this publication in new window or tab >>Assessing the SCAN functional for itinerant electron ferromagnets
Show others...
2018 (English)In: Physical Review B, ISSN 2469-9950, E-ISSN 2469-9969, Vol. 98, no 9, article id 094413Article in journal (Refereed) Published
Abstract [en]

Density functional theory is a standard model for condensed-matter theory and computational material science. The accuracy of density functional theory is limited by the accuracy of the employed approximation to the exchange-correlation functional. Recently, the so-called strongly constrained appropriately normed (SCAN) [Sun, Ruzsinszky, and Perdew, Phys. Rev. Lett. 115, 036402 (2015)] functional has received a lot of attention due to promising results for covalent, metallic, ionic, as well as hydrogen- and van der Waals-bonded systems alike. In this work, we focus on assessing the performance of the SCAN functional for itinerant magnets by calculating basic structural and magnetic properties of the transition metals Fe, Co, and Ni. We find that although structural properties of bcc-Fe seem to be in good agreement with experiment, SCAN performs worse than standard local and semilocal functionals for fcc-Ni and hcp-Co. In all three cases, the magnetic moment is significantly overestimated by SCAN, and the 3d states are shifted to lower energies, as compared to experiments.

Place, publisher, year, edition, pages
AMER PHYSICAL SOC, 2018
National Category
Theoretical Chemistry
Identifiers
urn:nbn:se:liu:diva-151640 (URN)10.1103/PhysRevB.98.094413 (DOI)000444348500004 ()
Note

Funding Agencies|Swedish e-Science Research Centre (SeRC); Swedish Research Council (VR) through the International Career Grant [20146336]; Marie Sklodowska CurieActions, Cofund, Project [INCA 600398]; Swedish Foundation for Strategic Research (SSF) through the Future Research Leaders 6 program; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University (Faculty Grant SFO-Mat-LiU) [2009-00971]; competence center FunMat-II - Vinnova [201605156]; Russian Science Foundation [18-12-00492]

Available from: 2018-09-27 Created: 2018-09-27 Last updated: 2020-03-17
2. Pressure-induced crossing of the core levels in 5d metals
Open this publication in new window or tab >>Pressure-induced crossing of the core levels in 5d metals
Show others...
2016 (English)In: Physical Review B, ISSN 2469-9950, E-ISSN 2469-9969, Vol. 93, no 20, p. 205150-Article in journal (Refereed) Published
Abstract [en]

A pressure-induced interaction between core electrons, the core-level crossing (CLC) transition, has been observed in hcp Os at P approximate to 400 GPa [L. Dubrovinsky et al., Nature (London) 525, 226 (2015)]. By carrying out a systematic theoretical study for all metals of the 5d series (Hf, Ta, W, Re, Os, Ir, Pt, Au) we have found that the CLC transition is a general effect for this series of metals. While in Pt it occurs at approximate to 1500 GPa, at a pressure substantially higher than in Os, in Ir it occurs already at 80 GPa. Moreover, we predict that in Re the CLC transition may take place already at ambient pressure. We explain the effect of the CLC and analyze the shift of the transition pressure across the series within the Thomas-Fermi model. In particular, we show that the effect has many common features with the atomic collapse in rare-earth elements.

Place, publisher, year, edition, pages
AMER PHYSICAL SOC, 2016
National Category
Condensed Matter Physics
Identifiers
urn:nbn:se:liu:diva-129490 (URN)10.1103/PhysRevB.93.205150 (DOI)000376638700004 ()
Note

Funding Agencies|Swedish Government Strategic Research Area Grant Swedish e-Science Research Centre (SeRC); Ministry of Education and Science of the Russian Federation in the framework of Increase Competitiveness Program of MISiS; Swedish Foundation for Strategic Research (SSF) program SRL [10-0026]; Swedish Research Council (VR) [2015-04391]; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University (Faculty Grant SFO-Mat-LiU) [2009 00971]; Ministry of Education and Science of the Russian Federation [14.Y26.31.0005]; German Research Foundation (DFG); Federal Ministry of Education and Research (BMBF), Germany; DFG [DU 954-8/1]; BMBF (PT-DESY) [5K13WC3, O5K2013, 2]; Act 211 Government of the Russian Federation [02.A03.21.0006]; Knut and Alice Wallenberg Foundation [2012.0083, 2014-2019]

Available from: 2016-06-21 Created: 2016-06-20 Last updated: 2020-03-17
3. Topological transitions of the Fermi surface of osmium under pressure: an LDA plus DMFT study
Open this publication in new window or tab >>Topological transitions of the Fermi surface of osmium under pressure: an LDA plus DMFT study
Show others...
2017 (English)In: New Journal of Physics, ISSN 1367-2630, E-ISSN 1367-2630, Vol. 19, article id 033020Article in journal (Refereed) Published
Abstract [en]

The influence of pressure on the electronic structure of Os has attracted substantial attention recently due to reports on isostructural electronic transitions in this metal. Here, we theoretically investigate the Fermi surface of Os from ambient to high pressure, using density functional theory combined with dynamical mean field theory. Weprovide a detailed discussion of the calculated Fermi surface and its dependence on the level of theory used for the treatment of the electron-electron interactions. Although we confirm that Os can be classified as weakly correlated metal, the inclusion of local quantum fluctuations between 5d electrons beyond the local density approximation explains the most recent experimental reports regarding the occurrence of electronic topological transitions in Os.

Place, publisher, year, edition, pages
IOP PUBLISHING LTD, 2017
Keywords
electronic topological transitions; strong correlations; Fermi surfaces
National Category
Condensed Matter Physics
Identifiers
urn:nbn:se:liu:diva-136604 (URN)10.1088/1367-2630/aa5f8e (DOI)000398666100004 ()
Note

Funding Agencies|Swedish Foundation for Strategic Research SSF (SRL) [10-0026]; Swedish Research Council (VR) grant [2015-04391]; Knut and Alice Wallenberg Foundation [2014-2019]; Swedish Government Strategic Research Area SeRC; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University (Faculty Grant SFOMatLiU) [2009 00971]; Ministry of Education and Science of the Russian Federation of NUST MISIS [K2-2016-013]; PHD DALEN Project [26228RM]; Swedish National Infrastructure for Computing (SNIC)

Available from: 2017-04-21 Created: 2017-04-21 Last updated: 2020-03-17
4. Phase stability and electronic structure of iridium metal at the megabar range
Open this publication in new window or tab >>Phase stability and electronic structure of iridium metal at the megabar range
Show others...
2019 (English)In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 9, article id 8940Article in journal (Refereed) Published
Abstract [en]

The 5d transition metals have attracted specific interest for high-pressure studies due to their extraordinary stability and intriguing electronic properties. In particular, iridium metal has been proposed to exhibit a recently discovered pressure-induced electronic transition, the so-called core-level crossing transition at the lowest pressure among all the 5d transition metals. Here, we report an experimental structural characterization of iridium by x-ray probes sensitive to both long- and short-range order in matter. Synchrotron-based powder x-ray diffraction results highlight a large stability range (up to 1.4 Mbar) of the low-pressure phase. The compressibility behaviour was characterized by an accurate determination of the pressure-volume equation of state, with a bulk modulus of 339(3) GPa and its derivative of 5.3(1). X-ray absorption spectroscopy, which probes the local structure and the empty density of electronic states above the Fermi level, was also utilized. The remarkable agreement observed between experimental and calculated spectra validates the reliability of theoretical predictions of the pressure dependence of the electronic structure of iridium in the studied interval of compressions.

Place, publisher, year, edition, pages
Nature Publishing Group, 2019
National Category
Condensed Matter Physics
Identifiers
urn:nbn:se:liu:diva-158862 (URN)10.1038/s41598-019-45401-x (DOI)000472137700036 ()31222067 (PubMedID)2-s2.0-85067628529 (Scopus ID)
Note

Funding Agencies|Spanish Ministry of Science, Innovation and Universities; Spanish Research Agency (AEI); European Fund for Regional Development (FEDER) [MAT2016-75586-C4-1/2-P]; Generalitat Valenciana [Prometeo/2018/123]; Spanish Mineco Project [FIS2017-83295-P]; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University (Faculty Grant SFO-Mat-LiU) [2009 00971]; Ministry of Science and High Education of the Russian Federation [K2-2019-001]; "Juan de la Cierva" fellowship [FJCI-2016-27921]; "Ramon y Cajal" fellowship [RYC-2015-17482]

Available from: 2019-07-16 Created: 2019-07-16 Last updated: 2020-03-19Bibliographically approved
5. Magnetic interactions in NiO at ultrahigh pressure
Open this publication in new window or tab >>Magnetic interactions in NiO at ultrahigh pressure
Show others...
2016 (English)In: PHYSICAL REVIEW B, ISSN 2469-9950, Vol. 93, no 20, p. 201110-Article in journal (Refereed) Published
Abstract [en]

Magnetic properties of NiO have been studied in the multimegabar pressure range by nuclear forward scattering of synchrotron radiation using the 67.4 keV Mossbauer transition of Ni-61. The observed magnetic hyperfine splitting confirms the antiferromagnetic state of NiO up to 280 GPa, the highest pressure where magnetism has been observed so far, in any material. Remarkably, the hyperfine field increases from 8.47 T at ambient pressure to similar to 24 T at the highest pressure, ruling out the possibility of a magnetic collapse. A joint x-ray diffraction and extended x-ray-absorption fine structure investigation reveals that NiO remains in a distorted sodium chloride structure in the entire studied pressure range. Ab initio calculations support the experimental observations, and further indicate a complete absence of Mott transition in NiO up to at least 280 GPa.

Place, publisher, year, edition, pages
AMER PHYSICAL SOC, 2016
National Category
Condensed Matter Physics
Identifiers
urn:nbn:se:liu:diva-129492 (URN)10.1103/PhysRevB.93.201110 (DOI)000376638400001 ()
Note

Funding Agencies|National Science Foundation-Earth Sciences [EAR-1128799]; Department of Energy-GeoSciences [DE-FG02-94ER14466]; DOE Office of Science [DE-AC02-06CH11357]; Helmholtz Association; Materials Sciences and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy; Swedish Government Strategic Research Area Grants Swedish e-Science Research Center (SeRC) and in Materials Science on Functional Materials at Linkoping University [2009 00971]; Knut and Alice Wallenbergs Foundation project Strong Field Physics and New States of Matter; Swedish Foundation for Strategic Research program SRL Grant [10-0026]; Swedish Research Council (VR) [2015-04391]; Grant of Ministry of Education and Science of the Russian Federation [14.Y26.31.0005]; Tomsk State University Academic D.I. Mendeleev Fund Program

Available from: 2016-06-20 Created: 2016-06-20 Last updated: 2020-03-17
6. Inverse pressure-induced Mott transition in TiPO4
Open this publication in new window or tab >>Inverse pressure-induced Mott transition in TiPO4
Show others...
2019 (English)In: Physical Review B, ISSN 2469-9950, E-ISSN 2469-9969, Vol. 99, no 24, article id 245132Article in journal (Refereed) Published
Abstract [en]

TiPO4 shows interesting structural and magnetic properties as temperature and pressure are varied, such as a spin-Peierls phase transition and the development of incommensurate modulations of the lattice. Recently, high-pressure experiments for TiPO4 reported two structural phases appearing at high pressures, the so-called phases IV and V [M. Bykov et al., Angew. Chem. Int. Ed. 55, 15053 (2016).]. The latter was shown to include the first example of fivefold O-coordinated P atoms in an inorganic phosphate compound. In this work, we characterize the electronic structure and other physical properties of these phases by means of ab initio calculations and investigate the structural transition. We find that the appearance of phases IV and V coincides with a collapse of the Mott insulating gap and quenching of magnetism in phase III as pressure is applied. Remarkably, our calculations show that in the high-pressure phase V, these features reappear, leading to an antiferromagnetic Mott insulating phase, with robust local moments.

Place, publisher, year, edition, pages
AMER PHYSICAL SOC, 2019
National Category
Condensed Matter Physics
Identifiers
urn:nbn:se:liu:diva-158863 (URN)10.1103/PhysRevB.99.245132 (DOI)000471984200002 ()
Note

Funding Agencies|Knut and Alice Wallenberg Foundation [KAW-2013.0020]; Swedish e-Science Research Centre (SeRC); Swedish Research Council (VR) [2015-04391]; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University [2009 00971]; Russian Science Foundation [18-12-00492]

Available from: 2019-07-16 Created: 2019-07-16 Last updated: 2020-03-17

Open Access in DiVA

fulltext(9717 kB)66 downloads
File information
File name FULLTEXT01.pdfFile size 9717 kBChecksum SHA-512
d6434a7e952d5d485a215c71f033ab375aae29c9a33ef571eea53f5fd4ccec0a9d4155be6cd4c3dd9c7b46cfc4a8735fe4743d302cce69635f9bfd28e84c6e41
Type fulltextMimetype application/pdf
Order online >>

Other links

Publisher's full text

Authority records BETA

Jönsson, Johan

Search in DiVA

By author/editor
Jönsson, Johan
By organisation
Theoretical PhysicsFaculty of Science & Engineering
Condensed Matter Physics

Search outside of DiVA

GoogleGoogle Scholar
Total: 66 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 495 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf