liu.seSearch for publications in DiVA
12345672 of 11
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Laser Speckle Contrast Imaging in Reconstructive Surgery
Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Hand and Plastic Surgery.
2020 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Objectives

Reconstructive surgery aims to restore function or normal appearance by reconstructing defective organs after trauma or disease. In patients undergoing reconstructive surgery, previous trauma, surgery or radiotherapy can result in compromised blood supply. This will affect the viability of the tissue and increases the risk for postoperative complications, such as ischemia and infection. It is therefore important to assess the tissue viability, both before, during and after the surgery. This can be done using different techniques that monitor the perfusion of the skin covering the affected area. In this thesis, LSCI have been evaluated for tissue monitoring in reconstructive surgery. The technique allows for a fast and noninvasive assessment of superficial tissue perfusion over a wide field. Based on previous work on the technology, we have seen clear advantages with LSCI compared to other methods, for example laser Doppler flowmetry (LDF). We have evaluated laser speckle contrast imaging (LSCI) as a tool for tissue monitoring in reconstructive surgery in four studies.

Methods

In study I we used a bench top model and healthy subjects to address methodological concerns subjected to the LSCI technology. We investigated the effect of motion distance and angle on the assessed perfusion value In study II we used a porcine model to compare LSCI and LDF as tools to detect partial and full venous outflow obstruction. We used both methods to assess a flap based on the cranial gluteal artery perforator with partial and complete occlusion of the vein and artery. In study III we used the same porcine model as in study II to investigate the possibility to use LSCI intraoperatively to identify flap areas with compromised circulation and thereby predict areas with a high risk of postoperative necrosis. In study IV we used LSCI for intraoperative evaluation of tissue viability during deep inferior epigastric perforator (DIEP) free flap surgery and to investigate the perfusion distribution according to the Hartrampf zones, as measured with LSCI, in relation to the selected perforator in the deep inferior epigastric perforator free flap.

Results

In study I we saw that tissue perfusion as measured with LSCI increases with increasing tissue motion, independent of frame rate, number of images, and tissue perfusion. Measured perfusion will decrease when images are acquired at an angle larger than 45° but distances between 15 and 40 cm do not affect the measured perfusion. In study II we observed significant decreases in perfusion during both partial and complete venous occlusion with both LSCI and LDF. However, higher variability seen with LDF, measured as % coefficient of variation. In study III a decrease in perfusion during the first 30 min after raising the flap and a perfusion value below 25 PU after 30 min was a predictor for tissue morbidity 72h after surgery. In study IV the highest perfusion values were found in zone I and higher perfusion in zone II compared to zone III, directly after the flap was raised. No remaining significant difference between zone I, II and III could be seen after anastomosis of the vessels. All flaps with a minimum perfusion <30 PU, measured after the flap was shaped and inserted, later suffered from partial flap necrosis.

Conclusion

LSCI is a technology that has the potential to contribute to tissue monitoring in reconstructive surgery. It has many advantages over other techniques, such as the fast acquisition time, the spatial resolution and the fact that it is completely non-invasive. However, the current system is still too bulky to be easily introduced into a clinical setting and the technology is also subject to certain drawbacks which limit its usability. It is sensitive to motion artefacts; only superficial tissue is assessed and cannot offer absolute perfusion data. If these disadvantages could be addressed, LSCI could contribute to a more accurate survey of tissue perfusion and thus better outcome in reconstructive surgery.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2020. , p. 76
Series
Linköping University Medical Dissertations, ISSN 0345-0082 ; 1735
National Category
Medical Laboratory and Measurements Technologies
Identifiers
URN: urn:nbn:se:liu:diva-164328DOI: 10.3384/diss.diva-164328ISBN: 9789179298722 (print)OAI: oai:DiVA.org:liu-164328DiVA, id: diva2:1415295
Public defence
2020-04-17, Eken, Building 421, Entrance 65, Campus US, Linköping, 09:00 (Swedish)
Opponent
Supervisors
Available from: 2020-03-18 Created: 2020-03-18 Last updated: 2020-03-26Bibliographically approved
List of papers
1. Methodological concerns with laser speckle contrast imaging in clinical evaluation of microcirculation
Open this publication in new window or tab >>Methodological concerns with laser speckle contrast imaging in clinical evaluation of microcirculation
Show others...
2017 (English)In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 12, no 3, article id e0174703Article in journal (Refereed) Published
Abstract [en]

Background Laser Speckle Contrast Imaging (LSCI) is a non-invasive and fast technique for measuring microvascular blood flow that recently has found clinical use for burn assessment and evaluation of flaps. Tissue motion caused by for example breathing or patient movements may however affect the measurements in these clinical applications, as may distance between the camera and the skin and tissue curvature. Therefore, the aims of this study were to investigate the effect of frame rate, number of frames/image, movement of the tissue, measuring distance and tissue curvature on the measured perfusion. Methods Methyl nicotinate-induced vasodilation in the forearm skin was measured using LSCI during controlled motion at different speeds, using different combinations of frame rate and number of frames/image, and at varying camera angles and distances. Experiments were made on healthy volunteers and on a cloth soaked in a colloidal suspension of polystyrene microspheres. Results Measured perfusion increased with tissue motion speed. The relation was independent of the absolute perfusion in the skin and of frame rate and number of frames/image. The measured perfusion decreased with increasing angles (16% at 60, p = 0.01). Measured perfusion did not vary significantly between measurement distances from 15 to 40 cm (p = 0.77, %CV 0.9%). Conclusion Tissue motion increases and measurement angles beyond 45 decrease the measured perfusion in LSCI. These findings have to be taken into account when LSCI is used to assess moving or curved tissue surfaces, which is common in clinical applications.

Place, publisher, year, edition, pages
PUBLIC LIBRARY SCIENCE, 2017
National Category
Radiology, Nuclear Medicine and Medical Imaging
Identifiers
urn:nbn:se:liu:diva-137098 (URN)10.1371/journal.pone.0174703 (DOI)000399174800074 ()28358906 (PubMedID)
Note

Funding Agencies|ALF grants, Region Ostergotland

Available from: 2017-05-05 Created: 2017-05-05 Last updated: 2020-03-18
2. Monitoring of partial and full venous outflow obstruction in a porcine flap model using laser speckle contrast imaging
Open this publication in new window or tab >>Monitoring of partial and full venous outflow obstruction in a porcine flap model using laser speckle contrast imaging
Show others...
2016 (English)In: Journal of Plastic, Reconstructive & Aesthetic Surgery, ISSN 1748-6815, E-ISSN 1532-1959, Vol. 69, no 7, p. 936-943Article in journal (Refereed) Published
Abstract [en]

Background: In microsurgery, there is a demand for more reliable methods of postoperative monitoring of free flaps, especially with regard to tissue-threatening obstructions of the feeding arteries and draining veins. In this study, we evaluated laser speckle contrast imaging (LSCI) and laser Doppler flowmetry (LDF) to assess their possibilities to detect partial and full venous outflow obstruction, as well as full arterial occlusion, in a porcine flap model. Methods: Cranial gluteal artery perforator flaps (CGAPs) were raised, and arterial and venous blood flow to and from the flaps was monitored using ultrasonic flow probes. The venous flow was altered with an inflatable cuff to simulate partial and full (50% and 100%) venous obstruction, and arterial flow was completely obstructed using clamps. The flap microcirculation was monitored using LSCI and LDF. Results: Both LDF and the LSCI detected significant changes in flap perfusion. After partial (50%) venous occlusion, perfusion decreased from baseline, LSCI: 63.5 +/- 12.9 PU (p = 0.01), LDF 31.3 +/- 15.7 (p = 0.64). After 100% venous occlusion, a further decrease in perfusion was observed: LSCI 54.6 +/- 14.2 PU (p amp;lt; 0.001) and LDF 16.7 +/- 12.8 PU (p amp;lt; 0.001). After release of the venous cuff, LSCI detected a return of the perfusion to a level slightly, but not significantly, below the baseline level 70.1 +/- 11.5 PU (p=0.39), while the LDF signal returned to a level not significant from the baseline 36.1 +/- 17.9 PU (p amp;gt; 0.99). Perfusion during 100% arterial occlusion decreased significantly as measured with both methods, LSCI: 48.3 +/- 7.7 (PU, pamp;lt;0.001) and LDF: 8.5 +/- 4.0 PU (pamp;lt;0.001). During 50% and 100% venous occlusion, LSCI showed a 20% and 26% inter-subject variability (CV%), respectively, compared to 50% and 77% for LDF. Conclusions: LSCI offers sensitive and reproducible measurements of flap microcirculation and seems more reliable in detecting decreases in blood perfusion caused by venous obstruction. It also allows for perfusion measurements in a relatively large area of flap tissue. This may be useful in identifying areas of the flap with compromised microcirculation during and after surgery. (C) 2016 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

Place, publisher, year, edition, pages
ELSEVIER SCI LTD, 2016
Keywords
Free flaps; Venous occlusion; Arterial occlusion; Laser Doppler; Laser speckle contrast imaging
National Category
Surgery
Identifiers
urn:nbn:se:liu:diva-130059 (URN)10.1016/j.bjps.2016.02.015 (DOI)000377698600010 ()27026039 (PubMedID)
Note

Funding Agencies|county of Ostergotland

Available from: 2016-07-06 Created: 2016-07-06 Last updated: 2020-03-18
3. The use of laser speckle contrast imaging to predict flap necrosis: An experimental study in a porcine flap model
Open this publication in new window or tab >>The use of laser speckle contrast imaging to predict flap necrosis: An experimental study in a porcine flap model
2019 (English)In: Journal of Plastic, Reconstructive & Aesthetic Surgery, ISSN 1748-6815, E-ISSN 1532-1959, Vol. 72, no 5, p. 771-777Article in journal (Refereed) Published
Abstract [en]

Background: We evaluated the use of laser speckle contrast imaging (LSCI) in the perioperative planning in reconstructive flap surgery. The aim of the study was to investigate whether LSCI can predict regions with a high risk of developing postoperative necrosis. Our hypothesis was that, perioperatively, such regions have perfusion values below a threshold value and show a negative perfusion trend. Methods: A porcine flap model based on the cranial gluteal artery perforator was used. Images were acquired before surgery, immediately after surgery (t = 0), after 30 min (t =30 min), and after 72h (t = 72 h). Regions of interest (ROIs) were chosen along the central axis of the flap. Clinical evaluation of the flap was made during each time point. Results: At t = 72 h, a demarcation line could be seen at a distance of 15.8 +/- 0.4 cm away from the proximal border of the flaps. At t =0, perfusion decreased gradually from the proximal to the distal ROI. At t =30 min, perfusion was significantly lower in the ROI distal to the final demarcation line than that at t = 0, and in all flaps, these ROIs had a perfusion amp;lt;25 PU. At t= 72 h, perfusion in the ROI proximal to this line returned to baseline levels, whereas perfusion in the distal ROI remained low. Conclusions: In our model, a decrease in perfusion during the first 30 min after surgery and a perfusion amp;lt;25 PU at t = 30 min was a predictor for tissue morbidity 72 h after surgery, which indicates that LSCI is a promising technique for perioperative monitoring in reconstructive flap surgery. (C) 2018 Published by Elsevier Ltd on behalf of British Association of Plastic, Reconstructive and Aesthetic Surgeons.

Place, publisher, year, edition, pages
ELSEVIER SCI LTD, 2019
Keywords
Flap monitoring; Reconstructive surgery; Laser speckle contrast imaging; Partial flap necrosis
National Category
Surgery
Identifiers
urn:nbn:se:liu:diva-156911 (URN)10.1016/j.bjps.2018.11.021 (DOI)000464986400009 ()30711464 (PubMedID)
Note

Funding Agencies|County of Ostergotland

Available from: 2019-05-28 Created: 2019-05-28 Last updated: 2020-03-18
4. Intraoperative Laser Speckle Contrast Imaging in DIEP Breast Reconstruction: A Prospective Case Series Study
Open this publication in new window or tab >>Intraoperative Laser Speckle Contrast Imaging in DIEP Breast Reconstruction: A Prospective Case Series Study
Show others...
2020 (English)In: Plastic and reconstructive surgery. Global open, ISSN 2169-7574, Vol. 8, no 1, p. e2529-e2529Article in journal (Refereed) Published
Abstract [en]

Laser speckle contrast imaging (LSCI) is a laser-based perfusion imaging technique that recently has been shown to predict ischemic necrosis in an experimental flap model and predicting healing time of scald burns. The aims were to investigate perfusion in relation to the selected perforator during deep inferior epigastric artery perforator (DIEP) flap surgery, and to evaluate LSCI in assisting of prediction of postoperative complications. METHODS: Twenty-three patients who underwent DIEP-procedures for breast reconstruction at 2 centers were included. Perfusion was measured in 4 zones at baseline, after raising, after anastomosis, and after shaping the flap. The perfusion in relation to the selected perforator and the accuracy of LSCI in predicting complications were analyzed. RESULTS: After raising the flap, zone I showed the highest perfusion (65 ± 10 perfusion units, PU), followed by zone II (58 ± 12 PU), zone III (53 ± 10 PU), and zone IV (45 ± 10 PU). The perfusion in zone I was higher than zone III (P = 0.002) and zone IV (P < 0.001). After anastomosis, zone IV had lower perfusion than zone I (P < 0.001), zone II (P = 0.01), and zone III (P = 0.02). Flaps with areas <30 PU after surgery had partial necrosis postoperatively (n = 4). CONCLUSIONS: Perfusion is highest in zone I. No perfusion difference was found between zones II and III. Perfusion <30 PU after surgery was correlated with partial necrosis. LSCI is a promising tool for measurement of flap perfusion and assessment of risk of postoperative ischemic complications.

Place, publisher, year, edition, pages
Wolters Kluwer, 2020
National Category
Surgery
Identifiers
urn:nbn:se:liu:diva-164324 (URN)10.1097/GOX.0000000000002529 (DOI)32095386 (PubMedID)
Note

32095386[pmid]; PMC7015619[pmcid]

Available from: 2020-03-17 Created: 2020-03-17 Last updated: 2020-03-23Bibliographically approved

Open Access in DiVA

fulltext(6060 kB)11 downloads
File information
File name FULLTEXT01.pdfFile size 6060 kBChecksum SHA-512
9ca3ba145a169097fc5148893ea1574c8bc7097b28451ac814cf487412c08fab5c100d01cddc6a6a8d9260f2a78e66230fc34c2fd30f7dce39da5044f998eca3
Type fulltextMimetype application/pdf
Order online >>

Other links

Publisher's full text

Authority records BETA

Zötterman, Johan

Search in DiVA

By author/editor
Zötterman, Johan
By organisation
Faculty of Medicine and Health SciencesDepartment of Hand and Plastic Surgery
Medical Laboratory and Measurements Technologies

Search outside of DiVA

GoogleGoogle Scholar
Total: 11 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 86 hits
12345672 of 11
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf