liu.seSearch for publications in DiVA
12345674 of 13
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A First-Principles Study of Highly Anharmonic and Dynamically Disordered Solids
Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, Faculty of Science & Engineering.
2020 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis is a first-principles theoretical investigation of solid materials with high degrees of anharmonicity. These are systems where the dynamics of the constituent atoms is too complex to be well-described by a set of uncoupled harmonic oscillators. While theoretical studies of such systems pose a significant challenge, they are under increasing demand due to the prevalence of these sytems in next-generation technological applications. Indeed, very anharmonic systems are ubiquitous in envisioned materials for future solid-state batteries and fuel-cells, thermoelectrics and optoelectronics. In some of these cases, the anharmonicity is a “side-effect” that simply has to be dealt with in order to accurately model certain properties, while in other cases the anharmonicity is the origin of the high-performance of the material.

There are two main parts to the thesis: The first is on materials with perovskite-related structures. This is a very large class of materials, members of which are typically highly anharmonic, not least in relation to a series of complex phase transformations between different structural modifications. In the thesis, I have studied a specific class of such phase-transformations that relate to tilting of the framework of octahedra that make up the structure. The oxide CaMnO3 and a set of inorganic halide perovskites were taken as model systems. The results shed some light on the experimentally observed differences between the local and average atomic structure in these systems. I have further studied Cs2AgBiBr6, a member of the so-called lead-free halide double perovskites. I rationalized its temperature induced phase transformation and found high degrees of anharmonicity and ultra-low thermal conductivity. Finally, I studied the influence of nuclear quantum effects, which are often ignored in computational modelling, on the structure and bonding in the hybrid organic-inorganic lead-halide perovskite, CH3NH3PbI3.

The second part of the thesis deals with theoretical studies of the phase stability of dynamically disordered solids. These are solids which have some sort of time-averaged long-range order, characteristic of a crystalline solid, but where the anharmonicity is so strong that the basic concept of an equilibrium atomic position cannot be statically assigned to all atoms. Examples include certain solids with very fast ionic conduction, so called superionics, and solids with rotating molecular units. This absence of equilibrium atomic positions makes many standard computational techniques to evaluate phase-stability inapplicable. I outline a method to deal with this issue, which is based on a stress-strain thermodynamic integration on a deformation path from an ordered variant to the dynamically disordered phase itself. I apply the method to study the phase stability of the high-temperature δ-phase of Bi2O3, which is the fastest know solid oxide ion conductor, and to Li2C2, whose high temperature cubic phase contains rotating C2 dimers.

The thesis exemplifies the need to go beyond many of the standard approximations used in first-principles computational materials science if accurate theoretical predictions are to be made. This is true, in particular, for many emerging material classes in the field of energy materials.

Abstract [sv]

I den konventionella teoretiska modellen för ett (kristallint) fast material antags varje atom kunna tillordnas en jämviktsposition. Rörelsen av atomerna runt dessa jämviktspositioner antags sedan ofta vara harmoniskt, d.v.s. hyfsat kunna beskrivs i termer av en samling (kvantmekaniska) fjädrar. Denna avhandling behandlar teori- och beräkningsstudier av material där ett eller båda av dessa antaganden inte är giltiga, så kallade anharmoniska material. En nogrann teoretisk behandling av sådana material är ofta ordentligt utmanande.

I takt med en snabb teknologiska utveckling ställs allt mer specifika och stränga krav på de material som behövs för diverse applikationer. Inom flertalet områden dyker då denna typ av komplexa och anharmoniska material upp som potentiella kandidater. Till exempel som fastelektrolyter för batterier och bränsleceller eller som solcellsmaterial. Inom vissa applikationer är denna anharmonicitet en bieffekt som man helt enkelt måste ta hänsyn till för att kunna göra noggranna teoretiska förutsägelser om diverse materialegenskaper, i andra fall är anharmoniciteten själva ursprunget för materialets goda egenskaper.

I den första delen av avhandlingen behandlar jag material som har, eller är nära relaterade till, den så kallade perovskitstrukturen. Detta är en väldigt stor klass av material, och strukturen dyker därför upp inom en mängd olika tillämpningar, inte minst i lovande solcellsmaterial. Dessa material är ofta mycket anharmoniska, vilket tar sig uttryck bland annat i en rad komplexa fastransformationer mellan olika typer av perovskitmodifikationer. I perovskitoxiden CaMnO3, samt i en samling halogenperovskiter, har jag har studerat en specifik typ av fastransformationer som tillkommer på grund av rotationer av de oktaedrar som utgör en del av strukturen. Jag har fortsatt studerat den väldigt kraftiga anharmoniciteten i den så kallade blyfria halogendubbelperovskiten Cs2AgBiBr6, och slutligen har jag studerat hur en kvantmekanisk behandling av atomkärnorna, något som oftast inte görs, påverkar materialegenskaper i CH3NH3PbI3, en så kallad hybrid organisk-inorganisk bly-halogenperovskit, som är ett extremt lovande solcellsmaterial.

I den andra delen av avhandlingen studerar jag dynamiskt oordnade fasta material. I dessa material är atomernas rörelse för komplex för att varje atom ska kunna tilldellas en statisk jämviktsposition. Material i denna klass är, till exempel, lovande som fastelektrolyter i bränsleceller och batterier. Mer specifikt studerar jag en typ av fasövergång, från en ordnad fas till en fas med dynamisk oordning, som ofta sker när dessa material värms upp. Jag introducerar en beräkningsmetod för att utvärdera deras fasstabilitet. Metoden är baserad på en så kallad termodynamisk integration, utförd mellan en ordnad variant och den dynamiskt oordnade fasen själv. Metoden gör det möjligt att beräkna fastransformationstemperaturer i denna typ av material. Jag applicerar metoden på Bi2O3, som i sin δ-fas är det fasta material med högst känd syrejonledningsförmåga, samt på Li2C2 vars kubiska fas innehåller roterande C2 molekyler. Resultaten stämmer bra överens med kända experimentella mätningar.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2020. , p. 80
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 2072
National Category
Inorganic Chemistry
Identifiers
URN: urn:nbn:se:liu:diva-165554DOI: 10.3384/diss.diva-165554ISBN: 9789179298555 (print)OAI: oai:DiVA.org:liu-165554DiVA, id: diva2:1428664
Public defence
2020-06-05, Online through Zoom (contact sergey.simak@liu.se) and Planck, F Building, Campus Valla, Linköping, 10:15 (English)
Opponent
Supervisors
Available from: 2020-05-06 Created: 2020-05-06 Last updated: 2020-05-15Bibliographically approved
List of papers
1. Nature of the octahedral tilting phase transitions in perovskites: A case study of CaMnO3
Open this publication in new window or tab >>Nature of the octahedral tilting phase transitions in perovskites: A case study of CaMnO3
2018 (English)In: Physical Review B, ISSN 2469-9950, E-ISSN 2469-9969, Vol. 97, no 2, article id 024108Article in journal (Refereed) Published
Abstract [en]

The temperature-induced antiferrodistortive (AFD) structural phase transitions in CaMnO3, a typical perovskite oxide, are studied using first-principles density functional theory calculations. These transitions are caused by tilting of the MnO6 octahedra that are related to unstable phonon modes in the high-symmetry cubic perovskite phase. Transitions due to octahedral tilting in perovskites normally are believed to fit into the standard soft-mode picture of displacive phase transitions. We calculate phonon-dispersion relations and potential-energy landscapes as functions of the unstable phonon modes and argue based on the results that the phase transitions are better described as being of order-disorder type. This means that the cubic phase emerges as a dynamical average when the system hops between local minima on the potential-energy surface. We then perform ab initio molecular dynamics simulations and find explicit evidence of the order-disorder dynamics in the system. Our conclusions are expected to be valid for other perovskite oxides, and we finally suggest how to predict the nature (displacive or order-disorder) of the AFD phase transitions in any perovskite system.

Place, publisher, year, edition, pages
AMER PHYSICAL SOC, 2018
National Category
Condensed Matter Physics
Identifiers
urn:nbn:se:liu:diva-144883 (URN)10.1103/PhysRevB.97.024108 (DOI)000423118400003 ()
Note

Funding Agencies|Swedish Research Council (VR) [2014-4750]; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University (Faculty Grant SFO-Mat-LiU) [2009 00971]; CeNano at Linkoping University

Available from: 2018-02-09 Created: 2018-02-09 Last updated: 2020-05-06
2. Low-energy paths for octahedral tilting in inorganic halide perovskites
Open this publication in new window or tab >>Low-energy paths for octahedral tilting in inorganic halide perovskites
2019 (English)In: Physical Review B, ISSN 2469-9950, E-ISSN 2469-9969, Vol. 99, no 10, article id 104105Article in journal (Refereed) Published
Abstract [en]

Instabilities relating to cooperative octahedral tilting is common in materials with perovskite structures, in particular in the subclass of halide perovskites. In this work the energetics of octahedral tilting in the inorganic metal halide perovskites CsPbI3 and CsSnI3 are investigated using first-principles density functional theory calculations. Several low-energy paths between symmetry equivalent variants of the stable orthorhombic (Pnma) perovskite variant are identified and investigated. The results are in favor of the presence of dynamic disorder in the octahedral tilting phase transitions of inorganic halide perovskites. In particular, one specific type of path, corresponding to an out-of-phase "tilt switch," is found to have significantly lower energy barrier than the others, which indicates the existence of a temperature range where the dynamic fluctuations of the octahedra follow only this type of path. This could produce a time averaged structure corresponding to the intermediate tetragonal (P4/mbm) structure observed in experiments. Deficiencies of the commonly employed simple one-dimensional "double-well" potentials in describing the dynamics of the octahedra are pointed out and discussed.

Place, publisher, year, edition, pages
AMER PHYSICAL SOC, 2019
National Category
Other Physics Topics
Identifiers
urn:nbn:se:liu:diva-156096 (URN)10.1103/PhysRevB.99.104105 (DOI)000461955500001 ()
Note

Funding Agencies|Swedish Research Council (VR) [2014-4750]; Centre in Nano Science and Nano Technology (CeNano) at Linkoping University

Available from: 2019-04-03 Created: 2019-04-03 Last updated: 2020-05-06
3. Finite-temperature lattice dynamics and superionic transition in ceria from first principles
Open this publication in new window or tab >>Finite-temperature lattice dynamics and superionic transition in ceria from first principles
2018 (English)In: Physical Review B, ISSN 2469-9950, E-ISSN 2469-9969, Vol. 97, no 10, article id 104309Article in journal (Refereed) Published
Abstract [en]

Ab initio molecular dynamics (AIMD) in combination with the temperature dependent effective potential (TDEP) method has been used to go beyond the quasiharmonic approximation and study the lattice dynamics in ceria, CeO2, at finite temperature. The results indicate that the previously proposed connection between the B-1u phonon mode turning imaginary and the transition to the superionic phase in fluorite structured materials is an artifact of the failure of the quasiharmonic approximation in describing the lattice dynamics at elevated temperatures. We instead show that, in the TDEP picture, a phonon mode coupling to the E-u mode prevents the B-1u mode from becoming imaginary. We directly observe the superionic transition at high temperatures in our AIMD simulations and find that it is initiated by the formation of oxygen Frenkel pairs (FP). These FP are found to form in a collective process involving simultaneous motion of two oxygen ions.

Place, publisher, year, edition, pages
AMER PHYSICAL SOC, 2018
National Category
Condensed Matter Physics
Identifiers
urn:nbn:se:liu:diva-147104 (URN)10.1103/PhysRevB.97.104309 (DOI)000427982100003 ()
Note

Funding Agencies|Swedish Research Council [2014-4750, 2014-5993]; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University (Faculty Grant SFO-Mat-LiU) [2009 00971]

Available from: 2018-04-20 Created: 2018-04-20 Last updated: 2020-05-06
4. Phase Stability of Dynamically Disordered Solids from First Principles
Open this publication in new window or tab >>Phase Stability of Dynamically Disordered Solids from First Principles
2018 (English)In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 121, no 22, article id 225702Article in journal (Refereed) Published
Abstract [en]

Theoretical studies of phase stability in solid materials with dynamic disorder are challenging due to the failure of the standard picture of atoms vibrating around fixed equilibrium positions. Dynamically disordered solid materials show immense potential in applications. In particular, superionic conductors, where the disorder results in exceptionally high ionic conductivity, are very promising as solid state electrolytes in batteries and fuel cells. The biggest obstacle in living up to this potential is the limited stability of the dynamically disordered phases. Here, we outline a method to obtain the free energy of a dynamically disordered solid. It is based on a stress-strain thermodynamic integration on a deformation path between a mechanically stable ordered variant of the disordered phase, and the dynamically disordered phase itself. We show that the large entropy contribution associated with the dynamic disorder is captured in the behavior of the stress along the deformation path. We apply the method to Bi2O3, whose superionic delta phase is the fastest known solid oxide ion conductor. We accurately reproduce the experimental transition enthalpy and the critical temperature of the phase transition from the low temperature ground state a phase to the superionic d phase. The method can be used for a first-principles description of the phase stability of superionic conductors and other materials with dynamic disorder, when the disordered phase can be connected to a stable phase through a continuous deformation path.

Place, publisher, year, edition, pages
AMER PHYSICAL SOC, 2018
National Category
Inorganic Chemistry
Identifiers
urn:nbn:se:liu:diva-153532 (URN)10.1103/PhysRevLett.121.225702 (DOI)000451581600011 ()30547633 (PubMedID)
Note

Funding Agencies|Swedish Research Council (VR) [2014-4750]; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University (Faculty Grant SFO-Mat-LiU) [2009 00971]

Available from: 2018-12-20 Created: 2018-12-20 Last updated: 2020-05-06

Open Access in DiVA

fulltext(35110 kB)34 downloads
File information
File name FULLTEXT01.pdfFile size 35110 kBChecksum SHA-512
bcb715bc2f2fa466f570016333d665be3518a7a3839633d870dee0fb63cda29825f3a328516cea0e2d748006df82c07bf0868894a34599ec0e5ec55d3850941c
Type fulltextMimetype application/pdf
Order online >>

Other links

Publisher's full text

Authority records BETA

Klarbring, Johan

Search in DiVA

By author/editor
Klarbring, Johan
By organisation
Theoretical PhysicsFaculty of Science & Engineering
Inorganic Chemistry

Search outside of DiVA

GoogleGoogle Scholar
Total: 34 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 157 hits
12345674 of 13
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf