liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
First-order time-derivative readout of epitaxial graphene-based gas sensors for fast analyte determination
Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
2020 (English)In: Sensors and Actuators Reports, ISSN 2666-0539, Vol. 2, no 1, article id 100012Article in journal (Refereed) Published
Abstract [en]

For many applications, gas sensors need to be very sensitive, selective and exhibit a good stability. Moreover, they should also be cheap and small, and allow a fast response time. Usually, sensors are optimized for specific applications with a compromise between the mentioned criteria. Here, we show a method that allows very sensitive, but rather slow, graphene metal oxide hybrid sensors to be used in a much faster and more effective way with a focus on targeting trace level concentrations of some common toxic air pollutants. By exploiting the first-order time-derivative of the measured resistance signal after a concentration step, the response peak is achieved much faster, while also being more robust against sensor exposure and relaxation times, and concomitantly maintaining the very high sensitivities inherent to graphene. We propose to use this method to generate an additional signal to allow using sensors that are normally rather slow in applications where steep concentration changes need to be detected with much faster time constants.

Place, publisher, year, edition, pages
ELSEVIER , 2020. Vol. 2, no 1, article id 100012
Keywords [en]
Epitaxial graphene on SiC, Chemical gas sensor, First-order time-derivative signal, Fast sensor readout, Air quality monitoring
National Category
Analytical Chemistry
Identifiers
URN: urn:nbn:se:liu:diva-166899DOI: 10.1016/j.snr.2020.100012ISI: 000658427700009OAI: oai:DiVA.org:liu-166899DiVA, id: diva2:1445004
Note

Funding: Swedish Foundation for Strategic Research (SSF)Swedish Foundation for Strategic Research [GMT140077, RMA15-024]; Centre in Nanoscienceandtechnology(CeNano) throughtheproject"Graphene-nanoparticlehybridgassensor"

Available from: 2020-06-22 Created: 2020-06-22 Last updated: 2022-10-27Bibliographically approved
In thesis
1. Towards a versatile gas sensing platform with epitaxial graphene
Open this publication in new window or tab >>Towards a versatile gas sensing platform with epitaxial graphene
2019 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

The work presented in this thesis focuses on how to utilize epitaxially grown graphene on SiC as a basis for ultra-sensitive gas sensor. Several approaches have been tested and evaluated to increase the sensitivity, selectivity, speed of response and stability and of the graphene based gas sensors with a focus on air quality monitoring applications. The graphene surfaces have been functionalized with different metal oxide nanoparticles and nanolayers using hollow-cathode sputtering and pulsed laser deposition. The modified surface was investigated towards its topography, integrity and chemical composition with characterization methods such as AFM, Raman and XPS. Moreover, the binding energy was calculated with density functional theory for benzene and formaldehyde when reacting with pristine epitaxial graphene and iron oxide nanoparticle decorated graphene to verify the usefulness of this approach. The impact of environmental influences such as operating temperature, relative humidity and UV irradiation towards sensing properties was investigated as well. To further decrease time constants, the first-order time-derivative of the sensor’s resistance is introduced as an alternative sensor signal and evaluated towards its applicability.

Applying these methods in laboratory conditions, sensors with a quantitative readout of single ppb benzene and formaldehyde were developed and time constants of less than one minute could be achieved with the first-order time-derivative signal. These results show promise to fill the existing gap of low-cost but highly sensitive and fast gas sensors for air quality monitoring.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2019. p. 81
Series
Linköping Studies in Science and Technology. Licentiate Thesis, ISSN 0280-7971 ; 1851
National Category
Materials Chemistry
Identifiers
urn:nbn:se:liu:diva-160482 (URN)10.3384/lic.diva-160482 (DOI)9789175190105 (ISBN)
Presentation
2019-10-04, Planck, F Building, Campus Valla, Linköping, 09:00 (English)
Opponent
Supervisors
Available from: 2019-09-23 Created: 2019-09-23 Last updated: 2021-10-13Bibliographically approved
2. Functionalized epitaxial graphene as versatile platform for air quality sensors
Open this publication in new window or tab >>Functionalized epitaxial graphene as versatile platform for air quality sensors
2021 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The work presented in this thesis focuses on epitaxial graphene on SiC as a platform for air quality sensors. Several approaches have been tested and evaluated to increase the sensitivity, selectivity, speed of response and stability of the sensors. The graphene surfaces have been functionalized, for example, with different metal oxide nanoparticles and nanolayers using hollow-cathode sputtering and pulsed laser deposition. The modified surfaces were investigated towards topography, integrity and chemical composition with characterization methods such as atomic force microscopy and Raman spectroscopy. Interaction energies between several analytes and nanoparticle-graphene-combinations were calculated by density functional theory to find the optimal material for specific target gases, and to verify the usefulness of this approach. The impact of environmental influences such as operating temperature, relative humidity and UV irradiation on sensing properties was investigated as well. To further enhance sensor performances, the first-order time-derivative of the sensor’s resistance was introduced to speed up sensor response and a temperature cycled operation mode was investigated towards selectivity.

Applying these methods in laboratory conditions, sensors with a quantitative readout of single ppb benzene and formaldehyde were developed. These results show promise to fill the existing gap of low-cost but highly sensitive and fast gas sensors for air quality monitoring.

Abstract [de]

Der Fokus dieser Thesis liegt auf der Erforschung von epitaxialem Graphen auf SiC als Plattform für Luftgütesensoren. Diverse Ansätze wurden untersucht, um die Sensitivität, Selektivität, Reaktionsgeschwindigkeit und Stabilität der Sensoren zu verbessern. Die Graphenoberfläche wurde unter anderem mit Metalloxid-Nanopartikeln oder nanometerdünnen Schichten funktionalisiert. Die funktionalisierten Sensorschichten wurden hinsichtlich ihrer Oberflächenbeschaffenheit, Unversehrtheit und chemischen Zusammensetzung mittels Rasterkraftmikroskopie und Raman Spektroskopie untersucht. Die Reaktionsenergien zwischen verschiedenen Analyten und Nanopartikel-Graphen-Kombinationen wurden mit Dichtefunktionaltheorie berechnet, um das optimale Material für spezifische Gase zu finden und um die Brauchbarkeit dieser Funktionalisierungsmethode zu verifizieren. Der Einfluss von äußeren Parametern wie Sensortemperatur, Luftfeuchte und UV-Einstrahlung auf die Sensoreigenschaften wurde ebenfalls untersucht. Um die Sensorleistung zu verbessern, wurde die erste zeitliche Ableitung des Sensorwiderstands als zusätzliches Signal eingeführt und ein temperaturzyklischer Betriebsmodus hinsichtlich seiner Eignung erforscht.

Durch die Anwendung dieser Methoden ist es möglich, einzelne ppbs Benzol und Formaldehyd unter Laborbedingungen zu detektieren. Diese Ergebnisse sind vielversprechend, um die bestehende Lücke der günstigen, aber sehr sensitiven Sensoren für Luftqualitätsüberwachung zu schließen.

Abstract [sv]

Arbetet som presenteras i denna avhandling fokuserar på epitaxiell grafen på SiC som en plattform för luftkvalitetssensorer. Flera tillvägagångssätt har testats och utvärderats för att öka känsligheten, selektiviteten, responstiden, och stabiliteten hos sensorerna. Grafenytorna har modifierats till exempel med olika metalloxid-nanopartiklar och nanolager med användning av hålkatodsputtring och PLD. De modifierade ytorna undersöktes mot topografi, strukturell integritet och kemisk sammansättning med karakteriseringsmetoder som atomkraftsmikroskopi och Ramanspektroskopi. Interaktionsenergier mellan flera analyter och nanopartiklar-grafen- materialkombinationer beräknades med täthetsfunktionalteori för att hitta de optimala materialkombinationerna för specifika målgaser och för att verifiera användbarheten av ytmodifieringarna. Effekten av externa faktorer som arbetstemperatur, relativ fuktighet och UV-bestrålning på avkänningsegenskaper undersöktes också. För att ytterligare förbättra sensorprestanda introducerades första ordningens tidsderivat av sensorns resistans för att snabbare utvärdera sensorns respons, och ett temperaturcyklat driftläge i kombination med multivariat dataanalys undersöktes mot selektivitet.

Genom att använda dessa metoder under laboratorieförhållanden utvecklades sensorer med en kvantitativ avläsning av enstaka ppb bensen och formaldehyd. Dessa resultat visar på en möjlig lösning för att fylla det hålrum som finns i dagens sensorteknologier för luftkvalitetsövervakning, där flera relevanta gaser i dagsläget inte kan mätas med kostnadseffektiva men mycket känsliga och snabba gassensorer.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2021. p. 104
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 2134
National Category
Materials Chemistry
Identifiers
urn:nbn:se:liu:diva-174680 (URN)10.3384/diss.diva-174680 (DOI)9789179296759 (ISBN)
Public defence
2021-05-28, Online and Ada Lovelace, B Building, Campus Valla, Linköping, 13:00 (English)
Opponent
Supervisors
Funder
Swedish Foundation for Strategic Research , GMT14-0077Swedish Foundation for Strategic Research , RMA15-024
Available from: 2021-04-12 Created: 2021-03-29 Last updated: 2021-04-12Bibliographically approved

Open Access in DiVA

fulltext(668 kB)233 downloads
File information
File name FULLTEXT01.pdfFile size 668 kBChecksum SHA-512
d044121eee5e1833e85aa99a259ac87b9367a7e15fff8da9dee90e2012f92121d94c2b13954f702ab016fb160382349893d2c26e144db1b77412186edd0bcebb
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Authority records

Rodner, MariusEriksson, Jens

Search in DiVA

By author/editor
Rodner, MariusEriksson, Jens
By organisation
Sensor and Actuator SystemsFaculty of Science & Engineering
Analytical Chemistry

Search outside of DiVA

GoogleGoogle Scholar
Total: 236 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 222 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf