liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Microstructural Evolution During High Temperature Dwell-fatigue of Austenitic Stainless Steels
Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering. (Sandvik Materials Technology, Sandviken)
Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0002-8304-0221
Show others and affiliations
2021 (English)In: International Journal of Fatigue, ISSN 0142-1123, E-ISSN 1879-3452, Vol. 143, article id 105990Article in journal (Refereed) Published
Abstract [en]

Microstructural evolution related to the mechanical response from isothermal dwell-fatigue testing at 700 °C of two austenitic steels, Esshete 1250 and Sanicro 25, is reported. Coherent Cu-precipitates and incoherent Nb-carbides were found to impede dislocation motion, increase hardening and improving the high temperature properties of Sanicro 25. Sparsely placed intergranular Cr- and Nb-carbides made Esshete 1250 susceptible to creep damage and intergranular crack propagation, mainly from interaction of the carbides and fatigue induced slip bands. Dynamic recrystallization of the plastic zone at the crack tip appeared to affect crack propagation of Sanicro 25 by providing an energetically privileged path.

Place, publisher, year, edition, pages
Elsevier, 2021. Vol. 143, article id 105990
Keywords [en]
creep-fatiuge interaction, high temperature austenitic alloys, high-resolution microscopy, dynamic recrystallization of crack tip plastic zone
National Category
Materials Engineering
Identifiers
URN: urn:nbn:se:liu:diva-171872DOI: 10.1016/j.ijfatigue.2020.105990ISI: 000597143700003Scopus ID: 2-s2.0-85095446912OAI: oai:DiVA.org:liu-171872DiVA, id: diva2:1508559
Note

Funding agencies: AB Sandvik Materials Technology in Sweden; Swedish Energy Agency through the Research Consortium of Materials Technology for Thermal Energy Processes [KME-701]

Available from: 2020-12-10 Created: 2020-12-10 Last updated: 2021-05-21Bibliographically approved
In thesis
1. High Temperature Fatigue Behaviour of Austenitic Stainless Steel: Microstructural Evolution during Dwell-Fatigue and Thermomechanical Fatigue
Open this publication in new window or tab >>High Temperature Fatigue Behaviour of Austenitic Stainless Steel: Microstructural Evolution during Dwell-Fatigue and Thermomechanical Fatigue
2021 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The global energy consumption is increasing and together with global warming from greenhouse gas emission, a need for more environmentally friendly energy production processes is created. Higher efficiency of biomass power plants can be achieved by increasing temperature and pressure in the boiler section, this would increase the generation of electricity along with the reduction in emission of greenhouse gases e.g. CO2. The generation of power must also be flexible to be able to follow the demands of the energy market and this results in a need for cyclic operating conditions with alternating output and multiple start-ups and shut-downs.

Because of the need for flexibility, higher temperature and higher pressure of future biomass power plants, the demands of improved mechanical properties of the materials used for the components are also increased. Properties like creep strength, maintained structural integrity, thermomechanical fatigue resistance and high temperature corrosion resistance are critical for materials used in the next generation biomass power plants. Highly alloyed austenitic stainless steels are known to possess such good high temperature properties and are relatively cheap compared to the nickel-base alloys, which are already used in high temperature cyclic conditions for other applications. The behaviour of austenitic stainless steels subjected to future biomass power plants operating conditions are not yet fully investigated.

This thesis presents research that includes investigations of the mechanical and microstructural behaviour during high temperature cyclic conditions of austenitic stainless steels. This is done using thermomechanical fatigue testing, dwell-fatigue testing and impact toughness testing at elevated temperatures. Material service degradation as an effect of microstructural evolution is investigated by ageing of some test specimens before testing. Microscopy is used to investigate the connection between the mechanical behaviour and the microstructural deformation- and damage mechanisms of the austenitic stainless steels after testing.

The results show that creep-fatigue interaction damage, creep damage and oxidation assisted cracking are present during high temperature cyclic conditions. In addition, ageing results in a less favourable microstructural configuration which negatively affects the resistance to high temperature damage mechanisms. An example of this is the lowering of impact toughness due to precipitation and coarsening of detrimental phases of some aged austenitic stainless steels. Moreover, TMF testing of aged austenitic stainless steels induce oxidation assisted cracking and an embrittling effect that cause significant cyclic life decrease. The creep-fatigue interaction behaviour during dwell-fatigue testing of two austenitic stainless steels generates various crack propagation characteristics. The higher alloyed material shows interchanging intra- and intergranular propagation with dynamic recrystallization, while the lower alloyed material shows propagation exclusively along the grain boundaries by the assistance of fatigue induced slip bands interaction with grain boundary precipitates.

The research of this thesis provides a deeper understanding of the structural integrity, deformation mechanisms, damage mechanisms and fracture mechanisms during high temperature cyclic conditions of austenitic stainless steels. Long term, this is believed to contribute to development of suitable materials used as components of future biomass-fired power plants to achieve sustainable power generation.

Abstract [sv]

På grund av den ökande globala energikonsumtionen tillsammans med globaluppvärmning från växthusgasutsläpp, finns det ett behov av miljövänlig hållbar energiproduktion. Genom att öka tryck och temperatur hos biomassaeldade kraftverkens ångpannor kan energiproduktionen effektiviseras, vilket skulle bidra till både minskning av biogasutsläpp och ökad energiproduktion. Energiproduktionens flexibilitet har även blivit allt viktigare till följd av en mer osäker energimarknad innehållande ökande miljövänliga alternativ, som till exempel vind- och solenergi, med varierande utgående effekt beroende på väderomställningar. Detta innebär ett ändrat drifttillstånd i form av flera uppstarter och nedstängningar för biomassaeldade kraftverken som delvis kommer användas som uppbackningsalternativ.

De ökande kraven på biomassaeldade kraftverkens flexibilitet, temperatur och tryck ger ökande krav på de mekaniska egenskaperna hos materialen  som används för kritiska komponenter. Detta innefattar motstånd till termomekanisk utmattning, högtemperaturkorrosion, kryp och bibehållen strukturell integritet. Höglegerade austenitiska rostfria stål har visat potential att uppnå dessa krav och är dessutom billigare än andra alternativ som till exempel nickelbaserade superlegeringar som vanligtvis används för andra högtemperatursapplikationer med cyklisk drift. Dock har det inte helt utretts hur austenitiska rostfria stål beter sig vid cyklisk drift med förhöjd tryck och temperatur.

Forskningen i denna doktorsavhandling behandlar austenitiska rostfria ståls mekaniska och mikrostrukturella beteende under cykliska driftförhållanden vid hög temperatur. Detta undersöks med hjälp av termomekanisk utmattningsprovning, slagseghetsprovning och utmattningsprovning med hålltid. En del av provstavarna åldras innan mekanisk provning för att undersöka påverkan av mikrostrukturell utveckling över tid. Mikroskopi används för att undersöka kopplingen mellan de mekaniska egenskaperna och de mikrostrukturella deformations- och skademekanismerna.

De mekaniska och mikroskopiska undersökningarna tyder på att krypskador, interaktion mellan utmattning och kryp och oxidationsassisterad sprickbildning negativt påverkar livslängden för austenitiska rostfria stål under cykliskdrift vid hög temperatur. Åldring innan provning förändrar mikrostrukturens ursprungliga konfiguration vilket resulterar i minskat skydd mot livsreducerande deformations- och skademekanismer. Höglegerade austenitiska rostfria stål visar sig ha bättre högtemperatursbeteende jämfört med andra austenitiska legeringar på grund av dess förstärkta mikrostruktur som ökar motståndet för oxidation, kryp och plastisk deformation.

Sammanfattningsvis har denna forskning resulterat i ökad förståelse för det mekaniska och mikrostrukturella beteendet hos austenitiska rostfria stål under cyklisk drift vid hög temperatur. Långsiktigt kommer detta bidra till förbättrad utveckling av högpresterande material för biomassaeldade kraftverk, vilket gagnar övergången till en mer hållbar framtida energiproduktion.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2021. p. 60
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 2140
National Category
Metallurgy and Metallic Materials
Identifiers
urn:nbn:se:liu:diva-175668 (URN)10.3384/diss.diva-175668 (DOI)9789179296667 (ISBN)
Public defence
2021-06-09, ACAS, A-building, Campus Valla, Linköping, 10:15 (English)
Opponent
Supervisors
Projects
KME701KME801
Funder
Swedish Energy Agency, KME701Swedish Energy Agency, KME801
Note

Additional funding agencies: AB Sandvik Materials Technology in Sandviken (Sweden), Sandvik Heating Technology AB in Hallstahammar(Sweden)

Available from: 2021-05-21 Created: 2021-05-14 Last updated: 2021-05-21Bibliographically approved

Open Access in DiVA

fulltext(17490 kB)232 downloads
File information
File name FULLTEXT01.pdfFile size 17490 kBChecksum SHA-512
09a120569dfa5ab055b47bbbb52d8a0b4e1bb6bf44c707c9b716df243d342badf5e30c28362ddc601bf39b48de2933d580a36c566c2ab5ee722e7338d150c87c
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records

Wärner, HugoXu, JinghaoChai, GuocaiMoverare, JohanCalmunger, Mattias

Search in DiVA

By author/editor
Wärner, HugoXu, JinghaoChai, GuocaiMoverare, JohanCalmunger, Mattias
By organisation
Engineering MaterialsFaculty of Science & Engineering
In the same journal
International Journal of Fatigue
Materials Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 240 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 212 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf