liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
The Block-Poisson Estimator for Optimally Tuned Exact Subsampling MCMC
Univ Technol Sydney, Australia; Sveriges Riksbank, Sweden.
Univ Sydney, Australia.
Linköpings universitet, Institutionen för datavetenskap, Statistik och maskininlärning. Linköpings universitet, Filosofiska fakulteten. Stockholm Univ, Sweden.
Univ New South Wales, Australia.
Vise andre og tillknytning
2021 (engelsk)Inngår i: Journal of Computational And Graphical Statistics, ISSN 1061-8600, E-ISSN 1537-2715, Vol. 30, nr 4, s. 877-888Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Speeding upMarkov chainMonte Carlo (MCMC) for datasets withmany observations by data subsampling has recently received considerable attention. A pseudo-marginalMCMCmethod is proposed that estimates the likelihood by data subsampling using a block-Poisson estimator. The estimator is a product of Poisson estimators, allowing us to update a single block of subsample indicators in each MCMC iteration so that a desired correlation is achieved between the logs of successive likelihood estimates. This is important since pseudo-marginal MCMC with positively correlated likelihood estimates can use substantially smaller subsamples without adversely affecting the sampling efficiency. The block-Poisson estimator is unbiased but not necessarily positive, so the algorithm runs the MCMC on the absolute value of the likelihood estimator and uses an importance sampling correction to obtain consistent estimates of the posterior mean of any function of the parameters. Our article derives guidelines to select the optimal tuning parameters for our method and shows that it compares very favorably to regular MCMC without subsampling, and to two other recently proposed exact subsampling approaches in the literature. Supplementary materials for this article are available online.

sted, utgiver, år, opplag, sider
Taylor & Francis, 2021. Vol. 30, nr 4, s. 877-888
Emneord [en]
Bayesian inference; Control variates; Data subsampling; Exact inference; Poisson estimator; Pseudo-marginal MCMC
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-176860DOI: 10.1080/10618600.2021.1917420ISI: 000656806400001OAI: oai:DiVA.org:liu-176860DiVA, id: diva2:1571027
Merknad

Funding Agencies|Swedish Foundation for Strategic ResearchSwedish Foundation for Strategic Research [RIT 15-0097]; [CE140100049]

Tilgjengelig fra: 2021-06-22 Laget: 2021-06-22 Sist oppdatert: 2022-04-05

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Søk i DiVA

Av forfatter/redaktør
Villani, Mattias
Av organisasjonen
I samme tidsskrift
Journal of Computational And Graphical Statistics

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 32 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf