liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Spatial 3D Matérn Priors for Fast Whole-Brain fMRI Analysis
Linköpings universitet, Institutionen för datavetenskap, Statistik och maskininlärning. Linköpings universitet, Tekniska fakulteten.
School of Mathematics, The University of Edinburgh, United Kingdom.
CEMSE Division, King Abdullah University of Science and Technology, Saudi Arabia.
Linköpings universitet, Institutionen för medicinsk teknik, Avdelningen för medicinsk teknik. Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Linköpings universitet, Institutionen för datavetenskap, Statistik och maskininlärning.ORCID-id: 0000-0001-7061-7995
Vise andre og tillknytning
2021 (engelsk)Inngår i: Bayesian Analysis, ISSN 1936-0975, E-ISSN 1931-6690, Vol. 16, nr 4, s. 1251-1278Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Bayesian whole-brain functional magnetic resonance imaging (fMRI) analysis with three-dimensional spatial smoothing priors has been shown to produce state-of-the-art activity maps without pre-smoothing the data. The proposed inference algorithms are computationally demanding however, and the spatial priors used have several less appealing properties, such as being improper and having infinite spatial range.We propose a statistical inference framework for whole-brain fMRI analysis based on the class of Mat ern covariance functions. The framework uses the Gaussian Markov random field (GMRF) representation of possibly anisotropic spatial Mat ern fields via the stochastic partial differential equation (SPDE) approach of Lindgren et al. (2011). This allows for more flexible and interpretable spatial priors, while maintaining the sparsity required for fast inference in the high-dimensional whole-brain setting. We develop an accelerated stochastic gradient descent (SGD) optimization algorithm for empirical Bayes (EB) inference of the spatial hyperparameters. Conditionally on the inferred hyperparameters, we make a fully Bayesian treatment of the brain activity. The Mat ern prior is applied to both simulated and experimental task-fMRI data and clearly demonstrates that it is a more reasonable choice than the previously used priors, using comparisons of activity maps, prior simulation and cross-validation.

sted, utgiver, år, opplag, sider
INT SOC BAYESIAN ANALYSIS , 2021. Vol. 16, nr 4, s. 1251-1278
Emneord [en]
spatial priors, Gaussian Markov random fields, fMRI, spatiotemporal modeling, efficient computation
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-178090DOI: 10.1214/21-BA1283ISI: 000754390900008OAI: oai:DiVA.org:liu-178090DiVA, id: diva2:1582253
Forskningsfinansiär
Swedish Research Council, 2013-5229Swedish Research Council, 2016-04187EU, Horizon 2020, 640171
Merknad

Funding: Swedish Research Council (Vetenskapsadet)Swedish Research Council [2013-5229, 2016-04187]; European Unions Horizon 2020 Programme for Research and Innovation [640171]; Center for Industrial Information Technology (CENIIT) at Linkoping University

Tilgjengelig fra: 2021-07-29 Laget: 2021-07-29 Sist oppdatert: 2022-03-15

Open Access i DiVA

fulltext(609 kB)127 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 609 kBChecksum SHA-512
b118459423338d39535624d2ee029d6936b27097222b35cd3a0f06ac4bbba90011b5fb4e8edec05d61c941a37bc3019c43208b5db5d642dd2a89cecc09c3d220
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekst

Person

Sidén, PerEklund, AndersVillani, Mattias

Søk i DiVA

Av forfatter/redaktør
Sidén, PerEklund, AndersVillani, Mattias
Av organisasjonen
I samme tidsskrift
Bayesian Analysis

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 127 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 133 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf