liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Solar-Driven Photoelectrochemical Performance of Novel ZnO/Ag2WO4/AgBr Nanorods-Based Photoelectrodes
Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0002-8985-0604
Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0001-8150-729X
Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0002-1452-4548
Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0001-6235-7038
Show others and affiliations
2021 (English)In: Nanoscale Research Letters, ISSN 1931-7573, E-ISSN 1556-276X, Vol. 16, no 1, article id 133Article in journal (Refereed) Published
Abstract [en]

Highly efficient photoelectrochemical (PEC) water oxidation under solar visible light is crucial for water splitting to produce hydrogen as a source of sustainable energy. Particularly, silver-based nanomaterials are important for PEC performance due to their surface plasmon resonance which can enhance the photoelectrochemical efficiency. However, the PEC of ZnO/Ag2WO4/AgBr with enhanced visible-light water oxidation has not been studied so far. Herein, we present a novel photoelectrodes based on ZnO/Ag2WO4/AgBr nanorods (NRs) for PEC application, which is prepared by the low-temperature chemical growth method and then by successive ionic layer adsorption and reaction (SILAR) method. The synthesized photoelectrodes were investigated by several characterization techniques, emphasizing a successful synthesis of the ZnO/Ag2WO4/AgBr heterostructure NRs with excellent photocatalysis performance compared to pure ZnO NRs photoelectrode. The significantly enhanced PEC was due to improved photogeneration and transportation of electrons in the heterojunction due to the synergistic effect of the heterostructure. This study is significant for basic understanding of the photocatalytic mechanism of the heterojunction which can prompt further development of novel efficient photoelectrochemical-catalytic materials.

Place, publisher, year, edition, pages
Springer , 2021. Vol. 16, no 1, article id 133
Keywords [en]
ZnO nanorods; Silver tungsten; Silver bromide; Heterojunction; Photoelectrodes; Water oxidation
National Category
Other Physics Topics
Identifiers
URN: urn:nbn:se:liu:diva-178741DOI: 10.1186/s11671-021-03586-zISI: 000687150800001PubMedID: 34417906OAI: oai:DiVA.org:liu-178741DiVA, id: diva2:1588969
Note

Funding Agencies|Linkoping University, Sweden

Available from: 2021-08-30 Created: 2021-08-30 Last updated: 2024-01-08
In thesis
1. Composite Nanostructured Materials for Renewable Energy Applications
Open this publication in new window or tab >>Composite Nanostructured Materials for Renewable Energy Applications
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Alternative title[sv]
Komposit Nanostrukturerade Material för Tillämpningar för Förnybar Energi
Abstract [en]

Diverse sources of energy are becoming increasingly significant in today's world. The most common source of energy today is fossil fuels, such as coal, oil, and gas. While this energy source has many advantages, it also comes with many problems. In order to meet this demand, environmentally friendly and sustainable alternatives to energy are urgently needed. Renewable energy such as hydro, wind, photovoltaics, biomass, and geothermal is an attractive and promising kind of energy. Solar energy is among the most efficient, cleanest, and cheapest sources of energy. In this thesis, two photo-processes are utilized to produce solar energy using nanostructured materials. One is photocatalysis, mainly photoelectrochemical (PEC) water splitting for hydrogen production and photodegradation of organic dyes, and another is a sunlight-powered photovoltaic cell.  

In this thesis, we aim to demonstrate optimized low-cost sustainable electrodes based on nanostructured materials for solar energy applications. For PEC water splitting two materials namely ZnO NRs and CuO NLs are fabricated by hydrothermal methods followed by deposition of different materials such as Ag2WO4 and AgBr. These materials show relatively high PEC water splitting efficiency using sunlight. Similarly, for the photodegradation of organic dyes Ta2O5 is used with the addition of Ag/AgCl nanoparticles (Ag/AgCl NPs), which results in an effective plasmonic photocatalyst for the removal of water-soluble Congo red (CR) dye compounds. For high-efficiency solar cells two methods are applied. Firstly, a FDTD simulation method was applied to study the plasmon enhancement of light absorption from p-i-n junction GaAs nanowires. Secondly a study of anisotropic deformation of colloidal particles exposed to heavy ions irradiation. Finally, a novel low-cost template-assisted method was used in order to improve the alignment of ZnO NRs grown on Si substrates. 

Abstract [sv]

Idag finns det ett ökat behov av olika energikällor. Den energikälla som i stor utsträckning används är fossilt bränsle, som till exempel kol, olja och gas. Emellertid finns det många kriser som associeras med denna energikälla. Därför är det bråttom att utveckla alternativa energikällor som är ekologiska och uthålliga. Förnybara energikällor som väte, vind, sol, biomassa och geotermisk energi är attraktiva. I denna avhandling demonstrerar vi två fotoprocesser som använder solenergi och är baserade på nanostrukturmaterial. Den första metoden som vi använder är fotokatalys: fotoelektrokemisk (PEC) vattensplittring för väteproduktion. Den andra metoden är fotodegradering av organiska färgämnen genom att använda solstrålning som inkommande energi. Dessutom undersöker vi hur nanotrådar kan användas som aktiva solceller.   

Avsikten med avhandlingen är att demonstrera optimiserade, billiga och uthålliga elektroder baserade på nanostrukturer för solenergitillämpningar. För PEC baserad vattensplittring använder vi två material, ZnO och CuO, som tillverkas med hjälp av hydrotermisk metoder följt av att vi deponerar olika material som Ag2WO4, och AgBr. Dessa material visar relativt hög effektivitet för PEC baserade användande av synligt solljus. För fotodegradering av organiska färgämnen användes Ta2O3 följt av deponering av Ag/AgCl nanopartiklar, som resulterar i effektiv plasmonisk fotokatalys för borttagande av det vattenlösliga Congo röda färgämnet. För högeffektiva solceller tillämpas två metoder först, en FDTD-simuleringsmetod användes för att studera plasmonförstärkningen av ljusabsorption från’’p-i-n junction’’ GaAs nanotrådar. För det andra en studie av anisotrop deformation av kolloidala partiklar under kraftig jonbestrålning. Slutligen användes en ny, billig mallassisterad metod för att förbättra anpassningen av ZnO NRs odlade på Si substrat.  

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2023. p. 68
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 2290
Keywords
Solar energy, Photocatalysis, Solar cells, Nanostructured materials, ZnO, CuO, Ta2O5, GaAs
National Category
Energy Systems
Identifiers
urn:nbn:se:liu:diva-191823 (URN)10.3384/9789180750561 (DOI)9789180750554 (ISBN)9789180750561 (ISBN)
Public defence
2023-03-15, TP1,Täppan, Campus Norrköping, Norrköping, 10:15 (English)
Opponent
Supervisors
Available from: 2023-02-17 Created: 2023-02-17 Last updated: 2024-01-08Bibliographically approved

Open Access in DiVA

fulltext(3646 kB)204 downloads
File information
File name FULLTEXT01.pdfFile size 3646 kBChecksum SHA-512
82d33038adaae562a8886797931cbd16e27c9a4db1831621ca1902c0ffd3ecde4116a855915cddee1e39655ab3edc8f825111ccd27fbc498e94b1c3275b439e2
Type fulltextMimetype application/pdf

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Mustafa, Elfatih MohammedElhadi Adam, Rania ElhadiRouf, PollaWillander, MagnusNur, Omer
By organisation
Physics, Electronics and MathematicsFaculty of Science & EngineeringChemistry
In the same journal
Nanoscale Research Letters
Other Physics Topics

Search outside of DiVA

GoogleGoogle Scholar
Total: 204 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 125 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf