liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A-Test Method for Quantifying Structural Risk and Learning Capacity of Supervised Machine Learning Methods
Linköpings universitet, Institutionen för medicinsk teknik, Avdelningen för medicinsk teknik. Linköpings universitet, Tekniska fakulteten.
Linköpings universitet, Institutionen för medicinsk teknik, Avdelningen för medicinsk teknik. Linköpings universitet, Tekniska fakulteten. Department of Information Science and Media Studies, University of Bergen, Norway.
2022 (engelsk)Inngår i: Studies in Health Technology and Informatics, ISSN 0926-9630, E-ISSN 1879-8365, Vol. 289, s. 132-135Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

This paper presents an original method for studying the performance of the supervised Machine Learning (ML) methods, the A-Test method. The method offers the possibility of investigating the structural risk as well as the learning capacity of ML methods in a quantitating manner. A-Test provides a powerful validation method for the learning methods with small or medium size of the learning data, where overfitting is regarded as a common problem of learning. Such a condition can occur in many applications of bioinformatics and biomedical engineering in which access to a large dataset is a challengeable task. Performance of the A-Test method is explored by validation of two ML methods, using real datasets of heart sound signals. The datasets comprise of children cases with a normal heart condition as well as 4 pathological cases: aortic stenosis, ventricular septal defect, mitral regurgitation, and pulmonary stenosis. It is observed that the A[1]Test method provides further comprehensive and more realistic information about the performance of the classification methods as compared to the existing alternatives, the K-fold validation and repeated random sub-sampling.

sted, utgiver, år, opplag, sider
Amsterdam, The Netherlands: IOS Press, 2022. Vol. 289, s. 132-135
Emneord [en]
A-Test method, structural risk, learning capacity, heart sounds
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-182397DOI: 10.3233/shti210876PubMedID: 35062109OAI: oai:DiVA.org:liu-182397DiVA, id: diva2:1629456
Tilgjengelig fra: 2022-01-17 Laget: 2022-01-17 Sist oppdatert: 2022-02-08bibliografisk kontrollert

Open Access i DiVA

fulltext(218 kB)89 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 218 kBChecksum SHA-512
edfb81b682d2afeb2ea2965a89434da689d6873aea46ae34f94e1a3a9484ed6a62d42ff2b69f5f1678b1da4739336527431cfd21316f782c32b9faf2215be7b6
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstPubMed

Person

Gharehbaghi, ArashBabic, Ankica

Søk i DiVA

Av forfatter/redaktør
Gharehbaghi, ArashBabic, Ankica
Av organisasjonen
I samme tidsskrift
Studies in Health Technology and Informatics

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 89 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 119 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf