liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Evolutionary Pathlines for Blood Flow Exploration in Cerebral Aneurysms
Department of Simulation and Graphics, University of Magdeburg, Germany.
Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, Faculty of Science & Engineering.
Department of Fluid Dynamics and Technical Flows, University of Magdeburg, Germany.
Institute of Neuroradiology, University Hospital Magdeburg, Germany.
Show others and affiliations
2019 (English)In: Eurographics Workshop on Visual Computing for Biology and Medicine / [ed] Kozlíková, Barbora and Linsen, Lars and Vázquez, Pere-Pau and Lawonn, Kai and Raidou, Renata Georgia, The Eurographics Association , 2019Conference paper, Published paper (Refereed)
Abstract [en]

Blood flow simulations play an important role for the understanding of vascular diseases, such as aneurysms. However, analysis of the resulting flow patterns, especially comparisons across patient groups, are challenging. Typically, the hemodynamic analysis relies on trial and error inspection of the flow data based on pathline visualizations and surface renderings. Visualizing too many pathlines at once may obstruct interesting features, e.g., embedded vortices, whereas with too little pathlines, particularities such as flow characteristics in aneurysm blebs might be missed. While filtering and clustering techniques support this task, they require the pre-computation of pathlines densely sampled in the space-time domain. Not only does this become prohibitively expensive for large patient groups, but the results often suffer from undersampling artifacts. In this work, we propose the usage of evolutionary algorithms to reduce the overhead of computing pathlines that do not contribute to the analysis, while simultaneously reducing the undersampling artifacts. Integrated in an interactive framework, it efficiently supports the evaluation of hemodynamics for clinical research and treatment planning in case of cerebral aneurysms. The specification of general optimization criteria for entire patient groups allows the blood flow data to be batch-processed. We present clinical cases to demonstrate the benefits of our approach especially in presence of aneurysm blebs. Furthermore, we conducted an evaluation with four expert neuroradiologists. As a result, we report advantages of our method for treatment planning to underpin its clinical potential.  

Place, publisher, year, edition, pages
The Eurographics Association , 2019.
Keywords [en]
Human-centered computing, Scientific visualization
National Category
Cardiac and Cardiovascular Systems
Identifiers
URN: urn:nbn:se:liu:diva-184202DOI: 10.2312/vcbm.20191250ISBN: 978-3-03868-081-9 (print)OAI: oai:DiVA.org:liu-184202DiVA, id: diva2:1650365
Conference
VCBM 19: Eurographics Workshop on Visual Computing for Biology and Medicine
Available from: 2022-04-07 Created: 2022-04-07 Last updated: 2022-04-07
In thesis
1. Exploring the Invisible: FINDING STRUCTURE IN SCIENTIFIC DATA
Open this publication in new window or tab >>Exploring the Invisible: FINDING STRUCTURE IN SCIENTIFIC DATA
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In this thesis, I present contributions towards the aim of understanding flow-related scientific data sets by communicating relation, properties, and structure. The individual papers are contributions to three different areas. First, real-world visualization challenges with domain specific tasks. The individual applications are ranging from analyzing transport behavior in a centrifugal pump, to visualization of the impact of volcano eruptions and their atmospheric aftermath, and studying circulation dynamics and eddy movements in the ocean currents of the Red Sea. Although the three individual publications target different domains, they share common demands. Furthermore, the experience shows that combining and adapting different visualization techniques to support experts is essential for these scenarios. Second, technical visualization research with a strong focus on geometry-based, interactive, and explorative techniques. In this area a new type of particle system and a novel geometry-based flow visualization technique based on evolutionary algorithms are presented. With both approaches, areas of interest can be highlighted in a semi-automatic fashion by facilitating user-defined importance measures. Lastly, a method for decoupling definition and tracking of features. Here, the development of a fast but flexible method for defining and tracking cyclonic features in pressure fields using a solid and robust mathematical basis is presented. The initial theoretical work is discussed in context of its practical applications by pointing to relevant follow-up publications.

The experience from real-world visualization tasks shows that understanding and gaining insight of scientific data with the help of visualization is an interactive, explorative, and non-linear process. Here, different methods must be combined and adapted such that they complement each other. Through this practice, relation, properties, and structure can be revealed, and a mental model can be created.

From the real-world visualization challenges and the contributions in research, demands on techniques and their embedding in a visualization toolkit can be derived. Here, the ideal software is flexible, adaptable, and allows for interactive exploration. Furthermore, the process is benefiting from a semi-automatic approach guiding the domain expert during analysis. These aspects are used as guidelines for the implementation and development work associated with the contributions of this thesis and are presented in a dedicated Chapter.

Abstract [sv]

Med denna avhandling presenterar jag bidrag som syftar till att förstå flödesrelaterade vetenskapliga datamängder genom att kommunicera relationer, egenskaper och struktur. De enskilda artiklarna i avhandlingen bidrar med kunskap till tre olika områden. Det första bidraget berör verkliga visualiseringsutmaningar med domänspecifika uppgifter. De individuella tillämpningarna sträcker sig från att analysera transportbeteende i en centrifugalpump till visualisering av effekterna av vulkanutbrott och deras atmosfäriska efterverkningar, samt att studera cirkulationsdynamik och virvelrörelser i Röda havets havsströmmar. Även om de tre enskilda publikationerna riktar sig till olika domäner delar de gemensamma krav, och erfarenheten visar att kombination och anpassning av olika visualiseringstekniker för att stödja experter i deras arbete är avgörande för dessa scenarier. Det andra bidraget är undersökning av teknisk visualiseringsforskning med starkt fokus på geometribaserade, interaktiva och utforskande tekniker. Detta bidrag presenterar en ny typ av partikelsystem samt en grupp metoder baserade på evolutionära algoritmer. Med båda tillvägagångssätten kan områden av intresse lyftas fram på ett halvautomatiskt sätt genom att underlätta användardefinierade betydelseåtgärder. Det tredje bidraget är en metod för att frikoppla definition och spårning av funktioner. Detta bidrag presenterar utvecklingen av en snabb men flexibel metod för att definiera och spåra cyklonegenskaper i tryckfält med hjälp av en solid och robust matematisk grund. Det första teoretiska arbetet sätts också i praktisk tillämpning med en uppföljande publikation.

Erfarenheterna från en verklig visualiseringsuppgift visar att förståelse och insikt i vetenskapliga data med hjälp av visualisering är en interaktiv, utforskande och icke-linjär process. Här måste olika metoder kombineras och anpassas så att de kompletterar varandra. Genom att göra så kan relationer, egenskaper och struktur i data avslöjas och en mental modell kan skapas.

Utifrån detta kan sedan krav skapas, både krav på visualiseringsteknikerna och krav på hur visualiseringsverktyg ska användas. Programvaran som används bör då vara flexibel, anpassningsbar och möjliggöra interaktiv utforskning. Dessutom drar data-analysprocessen nytta av ett halvautomatiskt tillvägagångssätt som styr domänexporten under analysen. Dessa aspekter har använts som riktlinjer för genomförandet och utvecklingsarbetet i samband med bidragen i denna avhandling.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2022. p. 123
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 2192
National Category
Computer Sciences
Identifiers
urn:nbn:se:liu:diva-183844 (URN)10.3384/9789179291266 (DOI)9789179291259 (ISBN)9789179291266 (ISBN)
Public defence
2022-04-29, Täppan - TPM55, Bredgatan 33 602 21 Norrköping, Norrköping, 13:00 (English)
Opponent
Supervisors
Available from: 2022-04-07 Created: 2022-03-25 Last updated: 2022-05-16Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Engelke, WitoHotz, Ingrid

Search in DiVA

By author/editor
Engelke, WitoHotz, Ingrid
By organisation
Media and Information TechnologyFaculty of Science & Engineering
Cardiac and Cardiovascular Systems

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 359 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf