liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Scalable Deep Gaussian Markov Random Fields for General Graphs
Linköpings universitet, Institutionen för datavetenskap, Statistik och maskininlärning. Linköpings universitet, Tekniska fakulteten.ORCID-id: 0000-0002-8201-0282
Linköpings universitet, Institutionen för datavetenskap, Statistik och maskininlärning. Linköpings universitet, Tekniska fakulteten. Arriver Software AB, Sweden.
Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för datavetenskap, Statistik och maskininlärning.
2022 (engelsk)Inngår i: Proceedings of the 39th International Conference on Machine Learning / [ed] Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, Sivan Sabato, 2022, s. 17117-17137Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Machine learning methods on graphs have proven useful in many applications due to their ability to handle generally structured data. The framework of Gaussian Markov Random Fields (GMRFs) provides a principled way to define Gaussian models on graphs by utilizing their sparsity structure. We propose a flexible GMRF model for general graphs built on the multi-layer structure of Deep GMRFs, originally proposed for lattice graphs only. By designing a new type of layer we enable the model to scale to large graphs. The layer is constructed to allow for efficient training using variational inference and existing software frameworks for Graph Neural Networks. For a Gaussian likelihood, close to exact Bayesian inference is available for the latent field. This allows for making predictions with accompanying uncertainty estimates. The usefulness of the proposed model is verified by experiments on a number of synthetic and real world datasets, where it compares favorably to other both Bayesian and deep learning methods.

sted, utgiver, år, opplag, sider
2022. s. 17117-17137
Serie
Proceedings of Machine Learning Research, ISSN 2640-3498 ; 162
Emneord [en]
machine learning, graphs, gmrf, deep gmrf, variational inference, gaussian, markov random field
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-187178ISI: 000900064907012OAI: oai:DiVA.org:liu-187178DiVA, id: diva2:1686544
Konferanse
The 39th International Conference on Machine Learning, ICML, 17-23 July 2022, Baltimore, Maryland, USA
Forskningsfinansiär
Wallenberg AI, Autonomous Systems and Software Program (WASP)ELLIIT - The Linköping‐Lund Initiative on IT and Mobile CommunicationsSwedish Research Council, 2020-04122Tilgjengelig fra: 2022-08-10 Laget: 2022-08-10 Sist oppdatert: 2023-05-10

Open Access i DiVA

fulltext(2515 kB)91 nedlastinger
Filinformasjon
Fil FULLTEXT02.pdfFilstørrelse 2515 kBChecksum SHA-512
bce5f2721d1d8a0a9936e59237ed8ebf929e9af5f38a057ef535872b2c7c7ef26a6ce089287df529f1e0de745388f197d39bdcc511e0d331b1b5a17187722fc1
Type fulltextMimetype application/pdf

Andre lenker

Publisher's full text

Person

Oskarsson, JoelSidén, PerLindsten, Fredrik

Søk i DiVA

Av forfatter/redaktør
Oskarsson, JoelSidén, PerLindsten, Fredrik
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 91 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 279 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf