liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Enabling Preventive Conservation of Historic Buildings Through Cloud-based Digital Twins: A Case Study in the City Theatre, Norrköping
Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0003-0931-7584
Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0002-5742-1266
Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0002-4136-0817
Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0002-1401-4636
2022 (English)In: IEEE Access, E-ISSN 2169-3536, Vol. 10, p. 90924-90939Article in journal (Refereed) Published
Sustainable development
Climate Improvements
Abstract [en]

Historic buildings require good maintenance to sustain their function and preserve embodied heritage values. Previous studies have demonstrated the benefits of digitalization techniques in improving maintenance and managing threats to historic buildings. However, there still lacks a solution that can consistently organize data collected from historic buildings to reveal operating conditions of historic buildings in real-time and to facilitate various data analytics and simulations. This study aims to provide such a solution to help achieve preventive conservation. The proposed solution integrates Internet of Things and ontology to create digital twins of historic buildings. Internet of Things enables revealing the latest status of historic buildings, while ontology provides a consistent data schema for representing historic buildings. This study also gives a reference implementation by using public cloud services and open-source software libraries, which make it easier to be reused in other historic buildings. To verify the feasibility of the solution, we conducted a case study in the City Theatre, Norrköping, Sweden. The obtained results demonstrate the advantages of digital twins in providing maintenance knowledge and identifying potential risks caused by fluctuations of relative humidity.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2022. Vol. 10, p. 90924-90939
Keywords [en]
digital twin, historic building, indoor environment, Internet of Things
National Category
Computer Systems
Identifiers
URN: urn:nbn:se:liu:diva-188008DOI: 10.1109/access.2022.3202181ISI: 000850844100001OAI: oai:DiVA.org:liu-188008DiVA, id: diva2:1692372
Funder
Swedish Energy AgencyAvailable from: 2022-09-01 Created: 2022-09-01 Last updated: 2025-04-23
In thesis
1. A Digitalization Framework for Smart Maintenance of Historic Buildings
Open this publication in new window or tab >>A Digitalization Framework for Smart Maintenance of Historic Buildings
2023 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Smart maintenance of historic buildings involves integration of digital technologies and data analysis methods to help maintain functionalities of these buildings and preserve their heritage values. However, the maintenance of historic buildings is a long-term process. During the process, the digital transformation requires overcoming various challenges, such as stable and scalable storage and computing resources, a consistent format for organizing and representing building data, and a flexible design to integrate data analytics to deliver applications.

This licentiate thesis aims to address these challenges by proposing a digitalization framework that integrates Internet of Things (IoT), cloud computing, ontology, and machine learning. IoT devices enable data collection from historic buildings to reveal their latest status. Using a public cloud platform brings stable and scalable resources for storing data, performing analytics, and deploying applications. Ontologies provide a clear and concise way to organize and represent building data, which makes it easier to understand the relationships between different building components and systems. Combined with IoT devices and ontologies, parametric digital twins can be created to evolve with their physical counterparts. Furthermore, with machine learning, digital twins can identify patterns from data and provide decision-makers with insights to achieve smart maintenance.

Papers I-III have shown that data can be reliably collected, transmitted, and stored in the cloud. Results of Paper IV indicate that a digital twin that depicts the latest status of a historic building can be created and fed with real-time sensor data. The insights discovered from the digital twin provide facts for improving the indoor climate to achieve both heritage conservation and human comfort. Papers V and VI have shown that deep learning methods exhibit strong capabilities in capturing tendency and uncertainty in building energy consumption. Incorporating future information that determines energy consumption is critical for making multi-horizon predictions. Moreover, changes in the operating mode of a building and activities held in a building bring more uncertainty in energy consumption and deteriorate the performance of point forecasts. 

Overall, this thesis contributes to the field of preservation of historic buildings by proposing a comprehensive digitalization framework that integrates various advanced digital technologies to provide a holistic approach to achieve smart maintenance of historic buildings.

Abstract [sv]

Smart underhåll av kulturhistoriska byggnader med digital teknologi och dataanalys underlättar bevarandet av det kulturhistoriska värdet såväl som anpassning för olika användning. Lokalt utplacerade uppkopplade sakernas internet enheter (Internet of Things, IoT) möjliggör realtidsövervakning av miljösensordata. Genom att analysera insamlade data så kan beslutsfattare identifiera och proaktivt hantera potentiella risker i byggnaden. Underhåll av kulturhistoriska byggnader är ett långsiktigt arbete där varje åtgärd kan få långtgående konsekvenser. Digitala verktyg kan därför bidra dels genom bättre historisk spårbarhet, dels genom bättre prediktion av vad som kommer att hända med byggnaden. En lyckad digital transformering kräver stabila och skalbara lagrings- och beräkningsresurser för att organisera och presentera byggnadsdata. Flexibla applikationer med väl integrerad dataanalys är viktigt för att teknologins fulla potential ska kunna nås.

Denna licentiatavhandling presenterar ett digitaliseringsramverk som adresserar dessa utmaningar genom att integrera IoT, molnberäkning, ontologisk modellering och maskininlärning. IoT-enheterna möjliggör realtidsövervakning av byggnadens status. Användningar en publika molnplattform erbjuder stabila och skalbara resurser för att lagra och analysera data. Ontologi ger ett klart och koncist sätt att organisera och representera byggnadsdata, vilket gör det enklare att förstå hur olika ingående delar påverkar byggnaden. Från detta kan fysikaliskt motsvarande digitala tvillingar skapas. Genom att applicera maskininlärning på dessa tvillingar så kan mönster identifieras som ger beslutsfattaren all nödvändig information för ett smart, väl optimerat underhåll av byggnaden.

Artikel I och II fokuserar på konceptformulering och validering av principen. Artikel I går igenom metoden som används för att skapa digitala tvillingar av historiska byggnader. Artikel II presenterar en referensimplementation av metoden. Den implementerade lösningen är ett komplett system för datainsamling, dataöverföring genom en edge-plattform och datalagring med Microsoft Azure Cloud. Artikel III presenterar fälttest med det egenutvecklade systemet i tre olika historiska byggnader, nämligen Stadsteatern, Stadsmuseet och Hörsalen i Norrköping, Sverige. Fälttestet verifierar stabiliteten hos systemet när det gäller långsiktig drift för datainsamling. Artikel IV introducerar ontologisk modellering till systemet för att tillhandahålla ett enhetligt format för att organisera och representera byggnadsdata. En fallstudie utfördes i Stadsteatern för att verifiera lösningens användbarhet, det studerades hur antalet besökare påverkar inomhusklimatet och potentiella risker identifierades. Artikel V och VI jämför prestanda hos moderna djupinlärningsmetoder med avseende på förmåga att prognostisera byggnaders energiförbrukning. Artikel V fokuserar på prestanda hos egenutvecklade prediktiva modeller vilka utvärderades i Stadsteatern och Stadsmuseet, som utgör två olika driftsfall. Artikel VI visar vad kombinationen av prediktiva modeller och digitala tvillingar kan göra för att förbättra byggnaders energiprestanda.

Sammanfattningsvis bidrar denna avhandling till bevarande av kulturhistoriskt viktiga byggnader med ett omfattande digitaliseringsramverk. Ett ramverk som integrerar olika digitala teknologier med en holistisk strategi för att möjliggöra smart underhåll av historiska byggnader.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2023. p. 37
Series
Linköping Studies in Science and Technology. Licentiate Thesis, ISSN 0280-7971 ; 1973
National Category
Computer Systems
Identifiers
urn:nbn:se:liu:diva-197276 (URN)10.3384/9789180753050 (DOI)9789180753043 (ISBN)9789180753050 (ISBN)
Presentation
2023-10-03, K2, Kåkenhus, Campus Norrköping, Norrköping, 09:00 (English)
Opponent
Supervisors
Available from: 2023-08-31 Created: 2023-08-31 Last updated: 2023-12-07Bibliographically approved
2. Data-Driven Smart Maintenance of Historic Buildings
Open this publication in new window or tab >>Data-Driven Smart Maintenance of Historic Buildings
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Digital transformation in the built environment offers new opportunities to improve building maintenance through data-driven approaches. Smart monitoring, predictive modeling, and artificial intelligence can enhance decision-making and enable proactive strategies. The preservation of historic buildings is an important scenario where preventive maintenance is essential to ensure long-term sustainability while protecting heritage values. This thesis presents a comprehensive solution for data-driven smart maintenance of historic buildings, integrating Internet of Things (IoT), cloud computing, edge computing, ontology-based data modeling, and machine learning to improve indoor climate management, energy efficiency, and conservation practices.

To enable long-term environmental monitoring, a scalable digitalization solution is developed in Paper I, integrating an IoT-based sensing system with edge and cloud computing. Field deployments confirm the long-run reliability of the system in supporting real-time and historical data analysis for maintenance decisions. Papers II and III further introduce the concept of parametric digital twins, incorporating ontology-based data models to ensure a consistent representation of building structures, systems, and environmental conditions. Case studies at the City Theatre of Norrköping and Löfstad Castle in Östergötland, Sweden, validate the effectiveness of digital twins in identifying indoor climate risks and guiding conservation strategies.

Based on the collected data, Papers IV and VI explore deep learning methods for building energy forecasting. Paper IV evaluates state-of-the-art deep learning architectures for point and probabilistic multi-horizon forecasting, showing that incorporating future exogenous factors improves prediction accuracy. It also highlights how different building operating modes impact forecasting performance. Paper VI integrates deep learning with digital twins to identify energy-saving opportunities and optimize operations.

Papers V and VII focus on predictive modeling for indoor climate management. Paper VII proposes an edge-centric approach as an alternative to cloud-centric solutions, ensuring low latency and data privacy. Paper V explores federated deep learning as a privacy-aware solution for decentralized indoor climate forecasting. A comparative study of federated learning algorithms demonstrates that federated models can achieve prediction accuracy comparable to centralized learning while preserving data privacy. These findings offer practical insights for managing heterogeneous, distributed environmental data to support sustainable building operations.

This thesis advances data-driven conservation of historic buildings by combining smart monitoring, digital twins, and artificial intelligence. The proposed methods enable preventive maintenance and pave the way for the next generation of heritage conservation strategies.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2025. p. 88
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 2444
National Category
Artificial Intelligence
Identifiers
urn:nbn:se:liu:diva-213216 (URN)10.3384/9789181180602 (DOI)9789181180596 (ISBN)9789181180602 (ISBN)
Public defence
2025-06-03, K2, Kåkenhus, Campus Norrköping, Norrköping, 09:00 (English)
Opponent
Supervisors
Note

Funding: The Swedish Energy Agency (Energimyndigheten) and the Swedish Innovation Agency (Vinnova). 

Available from: 2025-04-23 Created: 2025-04-23 Last updated: 2025-04-23Bibliographically approved

Open Access in DiVA

fulltext(10019 kB)672 downloads
File information
File name FULLTEXT01.pdfFile size 10019 kBChecksum SHA-512
b391c9fa4a573635e9efbdeafe406ee392f6343ddad5773b96f0d076db9c14f27028178c1815aefe28ee883d361080f77790c10c1e3895a4ee3fa5445a80a6c8
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Authority records

Ni, ZhongjunLiu, YuKarlsson, MagnusGong, Shaofang

Search in DiVA

By author/editor
Ni, ZhongjunLiu, YuKarlsson, MagnusGong, Shaofang
By organisation
Physics, Electronics and MathematicsFaculty of Science & Engineering
In the same journal
IEEE Access
Computer Systems

Search outside of DiVA

GoogleGoogle Scholar
Total: 673 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 401 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf