liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A review of deep learning methods for pixel-level crack detection
Changan Univ, Peoples R China; Baoji Univ Arts & Sci, Peoples R China.
Changan Univ, Peoples R China.
Changan Univ, Peoples R China.
Wenzhou Univ, Peoples R China.
Visa övriga samt affilieringar
2022 (Engelska)Ingår i: Journal of Traffic and Transportation Engineering (English Edition), ISSN 2095-7564, Vol. 9, nr 6, s. 945-968Artikel, forskningsöversikt (Refereegranskat) Published
Abstract [en]

Cracks are a major sign of aging transportation infrastructure. The detection and repair of cracks is the key to ensuring the overall safety of the transportation infrastructure. In recent years, due to the remarkable success of deep learning (DL) in the field of crack detection, many researches have been devoted to developing pixel-level crack image seg-mentation (CIS) models based on DL to improve crack detection accuracy, but as far as we know there is no review of DL-based CIS methods yet. To address this gap, we present a comprehensive thematic survey of DL-based CIS techniques. Our review offers several contributions to the CIS area. First, more than 40 papers of journal or top conference most published in the last three years are identified and collected based on the systematic literature review method. Second, according to the backbone network architecture of the models proposed in them, they are grouped into 10 topics: FCN, U-Net, encoder-decoder model, multi-scale, attention mechanism, transformer, two-stage detection, multi-modal fusion, unsupervised learning and weakly supervised learning, to be reviewed. Meanwhile, our survey focuses on discussing strengths and limitations of the models in each topic so as to reveal the latest research progress in the CIS field. Third, publicly accessible data sets, evaluation metrics, and loss functions that can be used for pixel-level crack detection are systematically introduced and summarized to facilitate researchers to select suitable components according to their own research tasks. Finally, we discuss six common problems and existing solutions to them in the field of DL-based CIS, and then suggest eight possible future research directions in this field. (c) 2022 Periodical Offices of Changan University. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC BY-NC -ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Ort, förlag, år, upplaga, sidor
KEAI PUBLISHING LTD , 2022. Vol. 9, nr 6, s. 945-968
Nyckelord [en]
Crack image segmentation; Crack detection; Convolutional neural networks; Deep learning; Systematic literature review
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:liu:diva-192010DOI: 10.1016/j.jtte.2022.11.003ISI: 000926636200001OAI: oai:DiVA.org:liu-192010DiVA, id: diva2:1740748
Anmärkning

Funding Agencies|National Natural Science Foundation of China [61971005]; Scientific Research Project of Department of Transport of Shaanxi Province [20-24K]; Key Project of Baoji University of Arts and Science [ZK2018013]; Research Project of Department of Education of Zhejiang Province [Y202146796]; Major Scientific and Technological Innovation Project of Wenzhou City [ZG2021029]

Tillgänglig från: 2023-03-02 Skapad: 2023-03-02 Senast uppdaterad: 2023-03-23

Open Access i DiVA

fulltext(2780 kB)168 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 2780 kBChecksumma SHA-512
c2dc02a6ff036323969c727c662f78e19d3fcef167d034340ee6a277da0fc6fbebda885232a3ef30ca1983add03fc260e76c935a1d57dea6acbe84ba0115e11c
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltext

Sök vidare i DiVA

Av författaren/redaktören
Vimarlund, Vivian
Av organisationen
Interaktiva och kognitiva systemTekniska fakulteten
I samma tidskrift
Journal of Traffic and Transportation Engineering (English Edition)
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 168 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 216 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf